- -

A Robust Adiabatic Model for a Quasi-Steady Prediction of Far-Off Non-Measured Performance in Vaneless Twin-Entry or Dual-Volute Radial Turbines

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A Robust Adiabatic Model for a Quasi-Steady Prediction of Far-Off Non-Measured Performance in Vaneless Twin-Entry or Dual-Volute Radial Turbines

Show full item record

Serrano, J.; Arnau Martínez, FJ.; García-Cuevas González, LM.; Samala, V. (2020). A Robust Adiabatic Model for a Quasi-Steady Prediction of Far-Off Non-Measured Performance in Vaneless Twin-Entry or Dual-Volute Radial Turbines. Applied Sciences. 10(6):1-43. https://doi.org/10.3390/app10061955

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166581

Files in this item

Item Metadata

Title: A Robust Adiabatic Model for a Quasi-Steady Prediction of Far-Off Non-Measured Performance in Vaneless Twin-Entry or Dual-Volute Radial Turbines
Author: Serrano, J.R. Arnau Martínez, Francisco José García-Cuevas González, Luis Miguel Samala, Vishnu
UPV Unit: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Issued date:
Abstract:
[EN] The current investigation describes in detail a mass flow oriented model for extrapolation of reduced mass flow and adiabatic efficiency of double entry radial inflow turbines under any unequal and partial flow admission ...[+]
Subjects: Turbocharger , Twin-entry radial turbines , Dual-volute radial turbines , Unequal and partial flow admission , Quasi-steady models , Adiabatic efficiency model , Reduced mass flow model
Copyrigths: Reconocimiento (by)
Source:
Applied Sciences. (eissn: 2076-3417 )
DOI: 10.3390/app10061955
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/app10061955
Project ID:
info:eu-repo/grantAgreement/UPV//PAID-06-18/
info:eu-repo/grantAgreement/UPV//FPI-2017-S2-1256/
Thanks:
Vishnu Samala is partially supported through contract FPI-2017-S2-1256 of Programa de Apoyo para la Investigacion y Desarrollo (PAID) of Universitat Politecnica de Valencia. This work was partially funded by the 'Ayuda a ...[+]
Type: Artículo

References

Haq, G., & Weiss, M. (2016). CO2 labelling of passenger cars in Europe: Status, challenges, and future prospects. Energy Policy, 95, 324-335. doi:10.1016/j.enpol.2016.04.043

Wang, S., Zhao, F., Liu, Z., & Hao, H. (2017). Heuristic method for automakers’ technological strategy making towards fuel economy regulations based on genetic algorithm: A China’s case under corporate average fuel consumption regulation. Applied Energy, 204, 544-559. doi:10.1016/j.apenergy.2017.07.076

Kalghatgi, G. (2018). Is it really the end of internal combustion engines and petroleum in transport? Applied Energy, 225, 965-974. doi:10.1016/j.apenergy.2018.05.076 [+]
Haq, G., & Weiss, M. (2016). CO2 labelling of passenger cars in Europe: Status, challenges, and future prospects. Energy Policy, 95, 324-335. doi:10.1016/j.enpol.2016.04.043

Wang, S., Zhao, F., Liu, Z., & Hao, H. (2017). Heuristic method for automakers’ technological strategy making towards fuel economy regulations based on genetic algorithm: A China’s case under corporate average fuel consumption regulation. Applied Energy, 204, 544-559. doi:10.1016/j.apenergy.2017.07.076

Kalghatgi, G. (2018). Is it really the end of internal combustion engines and petroleum in transport? Applied Energy, 225, 965-974. doi:10.1016/j.apenergy.2018.05.076

Serrano, J. (2017). Imagining the Future of the Internal Combustion Engine for Ground Transport in the Current Context. Applied Sciences, 7(10), 1001. doi:10.3390/app7101001

Kruiswyk, R. W. (2012). The role of turbocompound in the era of emissions reduction. 10th International Conference on Turbochargers and Turbocharging, 269-280. doi:10.1533/9780857096135.5.269

Yang, M., Deng, K., Martines-Botas, R., & Zhuge, W. (2016). An investigation on unsteadiness of a mixed-flow turbine under pulsating conditions. Energy Conversion and Management, 110, 51-58. doi:10.1016/j.enconman.2015.12.007

Zhu, D., & Zheng, X. (2017). Asymmetric twin-scroll turbocharging in diesel engines for energy and emission improvement. Energy, 141, 702-714. doi:10.1016/j.energy.2017.07.173

Romagnoli, A., Copeland, C. D., Martinez-Botas, R., Seiler, M., Rajoo, S., & Costall, A. (2012). Comparison Between the Steady Performance of Double-Entry and Twin-Entry Turbocharger Turbines. Journal of Turbomachinery, 135(1). doi:10.1115/1.4006566

Serrano, J. R., Arnau, F. J., Gracía-Cuevas, L. M., Samala, V., & Smith, L. (2019). Experimental approach for the characterization and performance analysis of twin entry radial-inflow turbines in a gas stand and with different flow admission conditions. Applied Thermal Engineering, 159, 113737. doi:10.1016/j.applthermaleng.2019.113737

Watson, N., & Janota, M. S. (1982). Turbocharging the Internal Combustion Engine. doi:10.1007/978-1-349-04024-7

Cerdoun, M., & Ghenaiet, A. (2016). Characterization of a Twin-Entry Radial Turbine under Pulsatile Flow Condition. International Journal of Rotating Machinery, 2016, 1-15. doi:10.1155/2016/4618298

Winkler, N., Ångström, H.-E., & Olofsson, U. (2005). Instantaneous On-Engine Twin-Entry Turbine Efficiency Calculations on a Diesel Engine. SAE Technical Paper Series. doi:10.4271/2005-01-3887

Fiaschi, D., Lifshitz, A., Manfrida, G., & Tempesti, D. (2014). An innovative ORC power plant layout for heat and power generation from medium- to low-temperature geothermal resources. Energy Conversion and Management, 88, 883-893. doi:10.1016/j.enconman.2014.08.058

Zare, V. (2015). A comparative exergoeconomic analysis of different ORC configurations for binary geothermal power plants. Energy Conversion and Management, 105, 127-138. doi:10.1016/j.enconman.2015.07.073

Daabo, A. M., Al Jubori, A., Mahmoud, S., & Al-Dadah, R. K. (2016). Parametric study of efficient small-scale axial and radial turbines for solar powered Brayton cycle application. Energy Conversion and Management, 128, 343-360. doi:10.1016/j.enconman.2016.09.060

Cheng, Z., Tong, S., & Tong, Z. (2019). Bi-directional nozzle control of multistage radial-inflow turbine for optimal part-load operation of compressed air energy storage. Energy Conversion and Management, 181, 485-500. doi:10.1016/j.enconman.2018.12.014

Wei, D., Lu, X., Lu, Z., & Gu, J. (2007). Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery. Energy Conversion and Management, 48(4), 1113-1119. doi:10.1016/j.enconman.2006.10.020

Cho, C.-H., Cho, S.-Y., & Ahn, K.-Y. (2010). A study of partial admission characteristics on a small-scale radial-inflow turbine. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 224(5), 737-748. doi:10.1243/09576509jpe865

Cho, S.-Y., Cho, C.-H., Ahn, K.-Y., & Lee, Y. D. (2014). A study of the optimal operating conditions in the organic Rankine cycle using a turbo-expander for fluctuations of the available thermal energy. Energy, 64, 900-911. doi:10.1016/j.energy.2013.11.013

Shin, H., Cho, J., Baik, Y.-J., Cho, J., Roh, C., Ra, H.-S., … Huh, J. (2017). Partial Admission, Axial Impulse Type Turbine Design and Partial Admission Radial Turbine Test for SCO2 Cycle. Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy. doi:10.1115/gt2017-64349

Ding, Z., Zhuge, W., Zhang, Y., Chen, H., Martinez-Botas, R., & Yang, M. (2017). A one-dimensional unsteady performance model for turbocharger turbines. Energy, 132, 341-355. doi:10.1016/j.energy.2017.04.154

Martin, G., Talon, V., Higelin, P., Charlet, A., & Caillol, C. (2009). Implementing Turbomachinery Physics into Data Map-Based Turbocharger Models. SAE International Journal of Engines, 2(1), 211-229. doi:10.4271/2009-01-0310

Fang, X., & Dai, Q. (2010). Modeling of turbine mass flow rate performances using the Taylor expansion. Applied Thermal Engineering, 30(13), 1824-1831. doi:10.1016/j.applthermaleng.2010.04.016

Romagnoli, A., & Martinez-Botas, R. (2011). Performance prediction of a nozzled and nozzleless mixed-flow turbine in steady conditions. International Journal of Mechanical Sciences, 53(8), 557-574. doi:10.1016/j.ijmecsci.2011.05.003

Chiong, M. S., Rajoo, S., Romagnoli, A., Costall, A. W., & Martinez-Botas, R. F. (2014). Integration of meanline and one-dimensional methods for prediction of pulsating performance of a turbocharger turbine. Energy Conversion and Management, 81, 270-281. doi:10.1016/j.enconman.2014.01.043

Serrano, J. R., Arnau, F. J., Dolz, V., Tiseira, A., & Cervelló, C. (2008). A model of turbocharger radial turbines appropriate to be used in zero- and one-dimensional gas dynamics codes for internal combustion engines modelling. Energy Conversion and Management, 49(12), 3729-3745. doi:10.1016/j.enconman.2008.06.031

Serrano, J. R., Arnau, F. J., García-Cuevas, L. M., Dombrovsky, A., & Tartoussi, H. (2016). Development and validation of a radial turbine efficiency and mass flow model at design and off-design conditions. Energy Conversion and Management, 128, 281-293. doi:10.1016/j.enconman.2016.09.032

Serrano, J. R., Arnau, F. J., García-Cuevas, L. M., & Inhestern, L. B. (2019). An innovative losses model for efficiency map fitting of vaneless and variable vaned radial turbines extrapolating towards extreme off-design conditions. Energy, 180, 626-639. doi:10.1016/j.energy.2019.05.062

Chiong, M. S., Rajoo, S., Martinez-Botas, R. F., & Costall, A. W. (2012). Engine turbocharger performance prediction: One-dimensional modeling of a twin entry turbine. Energy Conversion and Management, 57, 68-78. doi:10.1016/j.enconman.2011.12.001

Costall, A. W., McDavid, R. M., Martinez-Botas, R. F., & Baines, N. C. (2010). Pulse Performance Modeling of a Twin Entry Turbocharger Turbine Under Full and Unequal Admission. Journal of Turbomachinery, 133(2). doi:10.1115/1.4000566

Newton, P., Romagnoli, A., Martinez-Botas, R., Copeland, C., & Seiler, M. (2013). A Method of Map Extrapolation for Unequal and Partial Admission in a Double Entry Turbine. Journal of Turbomachinery, 136(6). doi:10.1115/1.4025763

Chiong, M. S., Rajoo, S., Romagnoli, A., Costall, A. W., & Martinez-Botas, R. F. (2016). One-dimensional pulse-flow modeling of a twin-scroll turbine. Energy, 115, 1291-1304. doi:10.1016/j.energy.2016.09.041

Fredriksson, C. F., Qiu, X., Baines, N. C., Müller, M., Brinkert, N., & Gutmann, C. (2012). Meanline Modeling of Radial Inflow Turbine With Twin-Entry Scroll. Volume 5: Manufacturing Materials and Metallurgy; Marine; Microturbines and Small Turbomachinery; Supercritical CO2 Power Cycles. doi:10.1115/gt2012-69018

Macek, J., Zak, Z., & Vitek, O. (2015). Physical Model of a Twin-scroll Turbine with Unsteady Flow. SAE Technical Paper Series. doi:10.4271/2015-01-1718

Palenschat, T., Mueller, M., Rajoo, S., Chiong, M. S., Newton, P., Martinez-Botas, R., & Tan, F. X. (2018). Steady-State Experimental and Meanline Study of an Asymmetric Twin-Scroll Turbine at Full and Unequal and Partial Admission Conditions. SAE Technical Paper Series. doi:10.4271/2018-01-0971

Brinkert, N., Sumser, S., Weber, S., Fieweger, K., Schulz, A., & Bauer, H.-J. (2012). Understanding the Twin Scroll Turbine: Flow Similarity. Journal of Turbomachinery, 135(2). doi:10.1115/1.4006607

Semlitsch, B., Wang, Y., & Mihăescu, M. (2015). Flow effects due to valve and piston motion in an internal combustion engine exhaust port. Energy Conversion and Management, 96, 18-30. doi:10.1016/j.enconman.2015.02.058

Serrano, J. R., Tiseira, A., García-Cuevas, L. M., Inhestern, L. B., & Tartoussi, H. (2017). Radial turbine performance measurement under extreme off-design conditions. Energy, 125, 72-84. doi:10.1016/j.energy.2017.02.118

Payri, F., Serrano, J. R., Fajardo, P., Reyes-Belmonte, M. A., & Gozalbo-Belles, R. (2012). A physically based methodology to extrapolate performance maps of radial turbines. Energy Conversion and Management, 55, 149-163. doi:10.1016/j.enconman.2011.11.003

Xue, Y., Yang, M., Martinez-Botas, R. F., Romagnoli, A., & Deng, K. (2019). Loss analysis of a mix-flow turbine with nozzled twin-entry volute at different admissions. Energy, 166, 775-788. doi:10.1016/j.energy.2018.10.075

Serrano, J. R., Navarro, R., García-Cuevas, L. M., & Inhestern, L. B. (2018). Turbocharger turbine rotor tip leakage loss and mass flow model valid up to extreme off-design conditions with high blade to jet speed ratio. Energy, 147, 1299-1310. doi:10.1016/j.energy.2018.01.083

Serrano, J. R., Olmeda, P., Arnau, F. J., & Samala, V. (2019). A holistic methodology to correct heat transfer and bearing friction losses from hot turbocharger maps in order to obtain adiabatic efficiency of the turbomachinery. International Journal of Engine Research, 21(8), 1314-1335. doi:10.1177/1468087419834194

Harrell, F. E. (2001). Ordinal Logistic Regression. Springer Series in Statistics, 331-343. doi:10.1007/978-1-4757-3462-1_13

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record