- -

Relationship between Buchholz's Apparent Power and Instantaneous Power in Three-Phase Systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Relationship between Buchholz's Apparent Power and Instantaneous Power in Three-Phase Systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author León-Martínez, Vicente es_ES
dc.contributor.author Montañana-Romeu, Joaquín es_ES
dc.contributor.author Peñalvo-López, Elisa es_ES
dc.contributor.author Valencia-Salazar, Iván es_ES
dc.date.accessioned 2021-05-21T03:32:05Z
dc.date.available 2021-05-21T03:32:05Z
dc.date.issued 2020-03-05 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166590
dc.description.abstract [EN] Similarly to how Steinmetz developed his theory of alternating current in single-phase sinusoidal systems, a few formal relationships between expressions of the instantaneous and Buchholz's apparent power in three-phase systems were identified in this paper. Based on these relationships, a methodology to express Buchholz's apparent power and its components in any three-phase, wye-configured system-sinusoidal or non-sinusoidal, balanced or unbalanced-through instantaneous power expressions was established. The application of the proposed method to the entire system allowed the determination of a novel quantity referred to as neutral-displacement power, which measured the impacts of the phenomena caused by the neutral path operation on the values of the source and load apparent power. These impacts were analyzed using a real-world urban installation with a neutral conductor deterioration simulation via an Excel platform as an application example. es_ES
dc.description.sponsorship This research was funded by the European Commission, grant number 847132. The APC was funded by the European Commission, grant number 847132. We gratefully thank Eléctrica de Vinalesa, S.L.U., for allowing us to take measurements using their electrical networks, and MDPI (www.mdpi.com/authors/english) for their English language editing. The authors deeply thank the European Commission for their support and funding provision. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Apparent power es_ES
dc.subject Instantaneous power es_ES
dc.subject Power systems es_ES
dc.subject Unbalanced systems es_ES
dc.subject Distorted systems es_ES
dc.subject Neutral conductor es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title Relationship between Buchholz's Apparent Power and Instantaneous Power in Three-Phase Systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app10051798 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/847132/EU/A holistic framework for Empowering SME's capacity to increase their energy efficiency/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.description.bibliographicCitation León-Martínez, V.; Montañana-Romeu, J.; Peñalvo-López, E.; Valencia-Salazar, I. (2020). Relationship between Buchholz's Apparent Power and Instantaneous Power in Three-Phase Systems. Applied Sciences. 10(5):1-15. https://doi.org/10.3390/app10051798 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app10051798 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 5 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\404870 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Czarnecki, L. S. (1987). What is wrong with the Budeanu concept of reactive and distortion power and why it should be abandoned. IEEE Transactions on Instrumentation and Measurement, IM-36(3), 834-837. doi:10.1109/tim.1987.6312797 es_ES
dc.description.references Czarnecki, L. S. (1988). Orthogonal decomposition of the currents in a 3-phase nonlinear asymmetrical circuit with a nonsinusoidal voltage source. IEEE Transactions on Instrumentation and Measurement, 37(1), 30-34. doi:10.1109/19.2658 es_ES
dc.description.references Czarnecki, L. S. (2008). Currents’ Physical Components (CPC) concept: A fundamental of power theory. 2008 International School on Nonsinusoidal Currents and Compensation. doi:10.1109/isncc.2008.4627483 es_ES
dc.description.references CZARNECKI, L. (2015). Currents’ Physical Components (CPC) in Three-Phase Systems with Asymmetrical Voltage. PRZEGLĄD ELEKTROTECHNICZNY, 1(6), 42-49. doi:10.15199/48.2015.06.06 es_ES
dc.description.references Emanuel, A. E. (1999). Apparent power definitions for three-phase systems. IEEE Transactions on Power Delivery, 14(3), 767-772. doi:10.1109/61.772313 es_ES
dc.description.references Pajic, S., & Emanuel, A. E. (2006). Modern Apparent Power Definitions: Theoretical Versus Practical Approach—The General Case. IEEE Transactions on Power Delivery, 21(4), 1787-1792. doi:10.1109/tpwrd.2006.876647 es_ES
dc.description.references Depenbrock, M. (1993). The FBD-method, a generally applicable tool for analyzing power relations. IEEE Transactions on Power Systems, 8(2), 381-387. doi:10.1109/59.260849 es_ES
dc.description.references Ferrero, A. (2007). Definitions of electrical quantities commonly used in non-sinusoidal conditions. European Transactions on Electrical Power, 8(4), 235-240. doi:10.1002/etep.4450080403 es_ES
dc.description.references Curtis, H. L., & Silsbee, F. B. (1935). Definitions of power and related quantities. Electrical Engineering, 54(4), 394-404. doi:10.1109/ee.1935.6539147 es_ES
dc.description.references Emanuel, A. E., & Orr, J. A. (s. f.). The effect of neutral path impedance on voltage and current distortion. Part I. symmetrical and balanced three-phase systems. 2004 11th International Conference on Harmonics and Quality of Power (IEEE Cat. No.04EX951). doi:10.1109/ichqp.2004.1409351 es_ES
dc.description.references Emanuel, A. E., & Orr, J. A. (s. f.). The effect of neutral path impedance on voltage and current distortion. Part II. Imbalanced three-phase systems. 2004 11th International Conference on Harmonics and Quality of Power (IEEE Cat. No.04EX951). doi:10.1109/ichqp.2004.1409350 es_ES
dc.description.references Blasco, P. A., Montoya-Mira, R., Diez, J. M., Montoya, R., & Reig, M. J. (2019). Compensation of Reactive Power and Unbalanced Power in Three-Phase Three-Wire Systems Connected to an Infinite Power Network. Applied Sciences, 10(1), 113. doi:10.3390/app10010113 es_ES
dc.description.references Akagi, H., Kanazawa, Y., & Nabae, A. (1984). Instantaneous Reactive Power Compensators Comprising Switching Devices without Energy Storage Components. IEEE Transactions on Industry Applications, IA-20(3), 625-630. doi:10.1109/tia.1984.4504460 es_ES
dc.description.references Czarnecki, L. S. (2006). Could Power Properties of Three-Phase Systems Be Described in Terms of the Poynting Vector? IEEE Transactions on Power Delivery, 21(1), 339-344. doi:10.1109/tpwrd.2005.852353 es_ES
dc.description.references Jeon, S. (2015). Properties of the generalised power theory: universality and partitioning/augmentation properties. IET Generation, Transmission & Distribution, 9(15), 2126-2134. doi:10.1049/iet-gtd.2014.0303 es_ES
dc.description.references Czarnecki, L. S. (2015). Critical comments on the Conservative Power Theory (CPT). 2015 International School on Nonsinusoidal Currents and Compensation (ISNCC). doi:10.1109/isncc.2015.7174713 es_ES
dc.description.references Artemenko, M. Y., & Batrak, L. M. (2017). The new formula for apparent power and power losses of three-phase four-wire system. 2017 IEEE 37th International Conference on Electronics and Nanotechnology (ELNANO). doi:10.1109/elnano.2017.7939784 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem