- -

Experimental Study of the Effect of Hydrotreated Vegetable Oil and Oxymethylene Ethers on Main Spray and Combustion Characteristics under Engine Combustion Network Spray A Conditions

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Experimental Study of the Effect of Hydrotreated Vegetable Oil and Oxymethylene Ethers on Main Spray and Combustion Characteristics under Engine Combustion Network Spray A Conditions

Show full item record

Pastor, JV.; García-Oliver, JM.; Mico Reche, C.; Garcia-Carrero, AA.; Gómez, A. (2020). Experimental Study of the Effect of Hydrotreated Vegetable Oil and Oxymethylene Ethers on Main Spray and Combustion Characteristics under Engine Combustion Network Spray A Conditions. Applied Sciences. 10(16):1-20. https://doi.org/10.3390/app10165460

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166601

Files in this item

Item Metadata

Title: Experimental Study of the Effect of Hydrotreated Vegetable Oil and Oxymethylene Ethers on Main Spray and Combustion Characteristics under Engine Combustion Network Spray A Conditions
Author: Pastor, José V. García-Oliver, José M Mico Reche, Carlos Garcia-Carrero, Alba Andreina Gómez, Arantzazu
UPV Unit: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Issued date:
Abstract:
[EN] Featured Application This work contributes to the understanding of the macroscopic characteristics of the spray as well as to the evolution of the combustion process for alternative fuels. All these fuels have been ...[+]
Subjects: Hydrotreated vegetal oil , Oxymethylene ethers , Ignition delay , Liquid length , Lift-off length , Soot
Copyrigths: Reconocimiento (by)
Source:
Applied Sciences. (eissn: 2076-3417 )
DOI: 10.3390/app10165460
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/app10165460
Project ID:
info:eu-repo/grantAgreement/EC/H2020/828947/EU/Supercomputing and Energy for Mexico/
info:eu-repo/grantAgreement/UPV//PAID-01-18/
info:eu-repo/grantAgreement/CONACyT//B-S-69926/
Thanks:
This research has been partly funded by the European Union's Horizon 2020 Programme through the ENERXICO project, grant agreement no 828947, and from the Mexican Department of Energy, CONACYT-SENER Hidrocarburos grant ...[+]
Type: Artículo

References

Reşitoğlu, İ. A., Altinişik, K., & Keskin, A. (2014). The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Technologies and Environmental Policy, 17(1), 15-27. doi:10.1007/s10098-014-0793-9

Mohan, B., Yang, W., & Chou, S. kiang. (2013). Fuel injection strategies for performance improvement and emissions reduction in compression ignition engines—A review. Renewable and Sustainable Energy Reviews, 28, 664-676. doi:10.1016/j.rser.2013.08.051

Leach, F., Kalghatgi, G., Stone, R., & Miles, P. (2020). The scope for improving the efficiency and environmental impact of internal combustion engines. Transportation Engineering, 1, 100005. doi:10.1016/j.treng.2020.100005 [+]
Reşitoğlu, İ. A., Altinişik, K., & Keskin, A. (2014). The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Technologies and Environmental Policy, 17(1), 15-27. doi:10.1007/s10098-014-0793-9

Mohan, B., Yang, W., & Chou, S. kiang. (2013). Fuel injection strategies for performance improvement and emissions reduction in compression ignition engines—A review. Renewable and Sustainable Energy Reviews, 28, 664-676. doi:10.1016/j.rser.2013.08.051

Leach, F., Kalghatgi, G., Stone, R., & Miles, P. (2020). The scope for improving the efficiency and environmental impact of internal combustion engines. Transportation Engineering, 1, 100005. doi:10.1016/j.treng.2020.100005

Kim, H., Ge, J., & Choi, N. (2018). Application of Palm Oil Biodiesel Blends under Idle Operating Conditions in a Common-Rail Direct-Injection Diesel Engine. Applied Sciences, 8(12), 2665. doi:10.3390/app8122665

Tziourtzioumis, D., & Stamatelos, A. (2017). Experimental Investigation of the Effect of Biodiesel Blends on a DI Diesel Engine’s Injection and Combustion. Energies, 10(7), 970. doi:10.3390/en10070970

Merola, S. S., Tornatore, C., Iannuzzi, S. E., Marchitto, L., & Valentino, G. (2014). Combustion process investigation in a high speed diesel engine fuelled with n-butanol diesel blend by conventional methods and optical diagnostics. Renewable Energy, 64, 225-237. doi:10.1016/j.renene.2013.11.017

Choi, K., Park, S., Roh, H. G., & Lee, C. S. (2019). Combustion and Emission Reduction Characteristics of GTL-Biodiesel Fuel in a Single-Cylinder Diesel Engine. Energies, 12(11), 2201. doi:10.3390/en12112201

Dimitriadis, A., Seljak, T., Vihar, R., Žvar Baškovič, U., Dimaratos, A., Bezergianni, S., … Katrašnik, T. (2020). Improving PM-NOx trade-off with paraffinic fuels: A study towards diesel engine optimization with HVO. Fuel, 265, 116921. doi:10.1016/j.fuel.2019.116921

Pastor, J. V., García, A., Micó, C., & Lewiski, F. (2020). An optical investigation of Fischer-Tropsch diesel and Oxymethylene dimethyl ether impact on combustion process for CI engines. Applied Energy, 260, 114238. doi:10.1016/j.apenergy.2019.114238

Bergthorson, J. M., & Thomson, M. J. (2015). A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines. Renewable and Sustainable Energy Reviews, 42, 1393-1417. doi:10.1016/j.rser.2014.10.034

Yehliu, K., Boehman, A. L., & Armas, O. (2010). Emissions from different alternative diesel fuels operating with single and split fuel injection. Fuel, 89(2), 423-437. doi:10.1016/j.fuel.2009.08.025

Gómez, A., Soriano, J. A., & Armas, O. (2016). Evaluation of sooting tendency of different oxygenated and paraffinic fuels blended with diesel fuel. Fuel, 184, 536-543. doi:10.1016/j.fuel.2016.07.049

Benajes, J., García, A., Monsalve-Serrano, J., & Martínez-Boggio, S. (2020). Potential of using OMEx as substitute of diesel in the dual-fuel combustion mode to reduce the global CO2 emissions. Transportation Engineering, 1, 100001. doi:10.1016/j.treng.2020.01.001

Burger, J., Siegert, M., Ströfer, E., & Hasse, H. (2010). Poly(oxymethylene) dimethyl ethers as components of tailored diesel fuel: Properties, synthesis and purification concepts. Fuel, 89(11), 3315-3319. doi:10.1016/j.fuel.2010.05.014

Iannuzzi, S. E., Barro, C., Boulouchos, K., & Burger, J. (2017). POMDME-diesel blends: Evaluation of performance and exhaust emissions in a single cylinder heavy-duty diesel engine. Fuel, 203, 57-67. doi:10.1016/j.fuel.2017.04.089

Omari, A., Heuser, B., & Pischinger, S. (2017). Potential of oxymethylenether-diesel blends for ultra-low emission engines. Fuel, 209, 232-237. doi:10.1016/j.fuel.2017.07.107

Bjørgen, K. O. P., Emberson, D. R., & Løvås, T. (2020). Combustion and soot characteristics of hydrotreated vegetable oil compression-ignited spray flames. Fuel, 266, 116942. doi:10.1016/j.fuel.2019.116942

Marchitto, L., Merola, S. S., Tornatore, C., & Valentino, G. (2016). An Experimental Investigation of Alcohol/Diesel Fuel Blends on Combustion and Emissions in a Single-Cylinder Compression Ignition Engine. SAE Technical Paper Series. doi:10.4271/2016-01-0738

Payri, R., Gimeno, J., Bardi, M., & Plazas, A. H. (2013). Study liquid length penetration results obtained with a direct acting piezo electric injector. Applied Energy, 106, 152-162. doi:10.1016/j.apenergy.2013.01.027

Benajes, J., Payri, R., Bardi, M., & Martí-Aldaraví, P. (2013). Experimental characterization of diesel ignition and lift-off length using a single-hole ECN injector. Applied Thermal Engineering, 58(1-2), 554-563. doi:10.1016/j.applthermaleng.2013.04.044

Xuan, T., Desantes, J. M., Pastor, J. V., & Garcia-Oliver, J. M. (2019). Soot temperature characterization of spray a flames by combined extinction and radiation methodology. Combustion and Flame, 204, 290-303. doi:10.1016/j.combustflame.2019.03.023

Pastor, J. V., Payri, R., Garcia-Oliver, J. M., & Briceño, F. J. (2013). Schlieren Methodology for the Analysis of Transient Diesel Flame Evolution. SAE International Journal of Engines, 6(3), 1661-1676. doi:10.4271/2013-24-0041

Pastor, J. V., García, A., Micó, C., & García-Carrero, A. A. (2020). Experimental study of influence of Liquefied Petroleum Gas addition in Hydrotreated Vegetable Oil fuel on ignition delay, flame lift off length and soot emission under diesel-like conditions. Fuel, 260, 116377. doi:10.1016/j.fuel.2019.116377

Reyes, M., Tinaut, F. V., Giménez, B., & Pastor, J. V. (2018). Effect of hydrogen addition on the OH* and CH* chemiluminescence emissions of premixed combustion of methane-air mixtures. International Journal of Hydrogen Energy, 43(42), 19778-19791. doi:10.1016/j.ijhydene.2018.09.005

Xuan, T., Pastor, J. V., García-Oliver, J. M., García, A., He, Z., Wang, Q., & Reyes, M. (2019). In-flame soot quantification of diesel sprays under sooting/non-sooting critical conditions in an optical engine. Applied Thermal Engineering, 149, 1-10. doi:10.1016/j.applthermaleng.2018.11.112

Choi, M. Y., Mulholland, G. W., Hamins, A., & Kashiwagi, T. (1995). Comparisons of the soot volume fraction using gravimetric and light extinction techniques. Combustion and Flame, 102(1-2), 161-169. doi:10.1016/0010-2180(94)00282-w

Li, D., He, Z., Xuan, T., Zhong, W., Cao, J., Wang, Q., & Wang, P. (2017). Simultaneous capture of liquid length of spray and flame lift-off length for second-generation biodiesel/diesel blended fuel in a constant volume combustion chamber. Fuel, 189, 260-269. doi:10.1016/j.fuel.2016.10.058

Lequien, G., Berrocal, E., Gallo, Y., Themudo e Mello, A., Andersson, O., & Johansson, B. (2013). Effect of Jet-Jet Interactions on the Liquid Fuel Penetration in an Optical Heavy-Duty DI Diesel Engine. SAE Technical Paper Series. doi:10.4271/2013-01-1615

Kook, S., & Pickett, L. M. (2012). Liquid length and vapor penetration of conventional, Fischer–Tropsch, coal-derived, and surrogate fuel sprays at high-temperature and high-pressure ambient conditions. Fuel, 93, 539-548. doi:10.1016/j.fuel.2011.10.004

Payri, R., Salvador, F. J., Manin, J., & Viera, A. (2016). Diesel ignition delay and lift-off length through different methodologies using a multi-hole injector. Applied Energy, 162, 541-550. doi:10.1016/j.apenergy.2015.10.118

Pickett, L. M., & Siebers, D. L. (2005). Orifice Diameter Effects on Diesel Fuel Jet Flame Structure. Journal of Engineering for Gas Turbines and Power, 127(1), 187-196. doi:10.1115/1.1760525

Pastor, J. V., García-Oliver, J. M., López, J. J., & Vera-Tudela, W. (2016). An experimental study of the effects of fuel properties on reactive spray evolution using Primary Reference Fuels. Fuel, 163, 260-270. doi:10.1016/j.fuel.2015.09.064

Pickett, L. M., & Siebers, D. L. (2004). Non-Sooting, Low Flame Temperature Mixing-Controlled DI Diesel Combustion. SAE Technical Paper Series. doi:10.4271/2004-01-1399

Aatola, H., Larmi, M., Sarjovaara, T., & Mikkonen, S. (2008). Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-off between NOx, Particulate Emission, and Fuel Consumption of a Heavy Duty Engine. SAE International Journal of Engines, 1(1), 1251-1262. doi:10.4271/2008-01-2500

Marinov, N. M., Pitz, W. J., Westbrook, C. K., Vincitore, A. M., Castaldi, M. J., Senkan, S. M., & Melius, C. F. (1998). Aromatic and Polycyclic Aromatic Hydrocarbon Formation in a Laminar Premixed n-Butane Flame. Combustion and Flame, 114(1-2), 192-213. doi:10.1016/s0010-2180(97)00275-7

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record