- -

Using the Information Provided by Forbidden Ordinal Patterns in Permutation Entropy to Reinforce Time Series Discrimination Capabilities

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Using the Information Provided by Forbidden Ordinal Patterns in Permutation Entropy to Reinforce Time Series Discrimination Capabilities

Mostrar el registro completo del ítem

Cuesta Frau, D. (2020). Using the Information Provided by Forbidden Ordinal Patterns in Permutation Entropy to Reinforce Time Series Discrimination Capabilities. Entropy. 22(5):1-17. https://doi.org/10.3390/e22050494

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166635

Ficheros en el ítem

Metadatos del ítem

Título: Using the Information Provided by Forbidden Ordinal Patterns in Permutation Entropy to Reinforce Time Series Discrimination Capabilities
Autor: Cuesta Frau, David
Entidad UPV: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Fecha difusión:
Resumen:
[EN] Despite its widely tested and proven usefulness, there is still room for improvement in the basic permutation entropy (PE) algorithm, as several subsequent studies have demonstrated in recent years. Some of these new ...[+]
Palabras clave: Permutation entropy , Ordinal patterns , Forbidden patterns , Signal classification
Derechos de uso: Reconocimiento (by)
Fuente:
Entropy. (issn: 1099-4300 )
DOI: 10.3390/e22050494
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/e22050494
Tipo: Artículo

References

Bandt, C., & Pompe, B. (2002). Permutation Entropy: A Natural Complexity Measure for Time Series. Physical Review Letters, 88(17). doi:10.1103/physrevlett.88.174102

Zanin, M., Zunino, L., Rosso, O. A., & Papo, D. (2012). Permutation Entropy and Its Main Biomedical and Econophysics Applications: A Review. Entropy, 14(8), 1553-1577. doi:10.3390/e14081553

Li, J., Yan, J., Liu, X., & Ouyang, G. (2014). Using Permutation Entropy to Measure the Changes in EEG Signals During Absence Seizures. Entropy, 16(6), 3049-3061. doi:10.3390/e16063049 [+]
Bandt, C., & Pompe, B. (2002). Permutation Entropy: A Natural Complexity Measure for Time Series. Physical Review Letters, 88(17). doi:10.1103/physrevlett.88.174102

Zanin, M., Zunino, L., Rosso, O. A., & Papo, D. (2012). Permutation Entropy and Its Main Biomedical and Econophysics Applications: A Review. Entropy, 14(8), 1553-1577. doi:10.3390/e14081553

Li, J., Yan, J., Liu, X., & Ouyang, G. (2014). Using Permutation Entropy to Measure the Changes in EEG Signals During Absence Seizures. Entropy, 16(6), 3049-3061. doi:10.3390/e16063049

Ravelo-García, A., Navarro-Mesa, J., Casanova-Blancas, U., Martin-Gonzalez, S., Quintana-Morales, P., Guerra-Moreno, I., … Hernández-Pérez, E. (2015). Application of the Permutation Entropy over the Heart Rate Variability for the Improvement of Electrocardiogram-based Sleep Breathing Pause Detection. Entropy, 17(3), 914-927. doi:10.3390/e17030914

Cuesta-Frau, D., Miró-Martínez, P., Oltra-Crespo, S., Jordán-Núñez, J., Vargas, B., González, P., & Varela-Entrecanales, M. (2018). Model Selection for Body Temperature Signal Classification Using Both Amplitude and Ordinality-Based Entropy Measures. Entropy, 20(11), 853. doi:10.3390/e20110853

Cuesta–Frau, D., Miró–Martínez, P., Oltra–Crespo, S., Jordán–Núñez, J., Vargas, B., & Vigil, L. (2018). Classification of glucose records from patients at diabetes risk using a combined permutation entropy algorithm. Computer Methods and Programs in Biomedicine, 165, 197-204. doi:10.1016/j.cmpb.2018.08.018

Gao, Y., Villecco, F., Li, M., & Song, W. (2017). Multi-Scale Permutation Entropy Based on Improved LMD and HMM for Rolling Bearing Diagnosis. Entropy, 19(4), 176. doi:10.3390/e19040176

Wang, X., Si, S., Wei, Y., & Li, Y. (2019). The Optimized Multi-Scale Permutation Entropy and Its Application in Compound Fault Diagnosis of Rotating Machinery. Entropy, 21(2), 170. doi:10.3390/e21020170

Wang, Q. C., Song, W. Q., & Liang, J. K. (2014). Road Flatness Detection Using Permutation Entropy (PE). Applied Mechanics and Materials, 721, 420-423. doi:10.4028/www.scientific.net/amm.721.420

Glynn, C. C., & Konstantinou, K. I. (2016). Reduction of randomness in seismic noise as a short-term precursor to a volcanic eruption. Scientific Reports, 6(1). doi:10.1038/srep37733

Zhang, Y., & Shang, P. (2017). Permutation entropy analysis of financial time series based on Hill’s diversity number. Communications in Nonlinear Science and Numerical Simulation, 53, 288-298. doi:10.1016/j.cnsns.2017.05.003

Fadlallah, B., Chen, B., Keil, A., & Príncipe, J. (2013). Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information. Physical Review E, 87(2). doi:10.1103/physreve.87.022911

Xiao-Feng, L., & Yue, W. (2009). Fine-grained permutation entropy as a measure of natural complexity for time series. Chinese Physics B, 18(7), 2690-2695. doi:10.1088/1674-1056/18/7/011

Azami, H., & Escudero, J. (2016). Amplitude-aware permutation entropy: Illustration in spike detection and signal segmentation. Computer Methods and Programs in Biomedicine, 128, 40-51. doi:10.1016/j.cmpb.2016.02.008

Cuesta–Frau, D. (2019). Permutation entropy: Influence of amplitude information on time series classification performance. Mathematical Biosciences and Engineering, 16(6), 6842-6857. doi:10.3934/mbe.2019342

Bian, C., Qin, C., Ma, Q. D. Y., & Shen, Q. (2012). Modified permutation-entropy analysis of heartbeat dynamics. Physical Review E, 85(2). doi:10.1103/physreve.85.021906

Cuesta–Frau, D., Varela–Entrecanales, M., Molina–Picó, A., & Vargas, B. (2018). Patterns with Equal Values in Permutation Entropy: Do They Really Matter for Biosignal Classification? Complexity, 2018, 1-15. doi:10.1155/2018/1324696

Zunino, L., Olivares, F., Scholkmann, F., & Rosso, O. A. (2017). Permutation entropy based time series analysis: Equalities in the input signal can lead to false conclusions. Physics Letters A, 381(22), 1883-1892. doi:10.1016/j.physleta.2017.03.052

Bubble Entropy: An Entropy Almost Free of Parameters. (2017). IEEE Transactions on Biomedical Engineering, 64(11), 2711-2718. doi:10.1109/tbme.2017.2664105

Amigó, J. (2010). Permutation Complexity in Dynamical Systems. Springer Series in Synergetics. doi:10.1007/978-3-642-04084-9

Amigó, J. M., Kocarev, L., & Szczepanski, J. (2006). Order patterns and chaos. Physics Letters A, 355(1), 27-31. doi:10.1016/j.physleta.2006.01.093

Zunino, L., Zanin, M., Tabak, B. M., Pérez, D. G., & Rosso, O. A. (2009). Forbidden patterns, permutation entropy and stock market inefficiency. Physica A: Statistical Mechanics and its Applications, 388(14), 2854-2864. doi:10.1016/j.physa.2009.03.042

Little, D. J., & Kane, D. M. (2017). Permutation entropy with vector embedding delays. Physical Review E, 96(6). doi:10.1103/physreve.96.062205

Riedl, M., Müller, A., & Wessel, N. (2013). Practical considerations of permutation entropy. The European Physical Journal Special Topics, 222(2), 249-262. doi:10.1140/epjst/e2013-01862-7

Rosso, O. A., Carpi, L. C., Saco, P. M., Gómez Ravetti, M., Plastino, A., & Larrondo, H. A. (2012). Causality and the entropy–complexity plane: Robustness and missing ordinal patterns. Physica A: Statistical Mechanics and its Applications, 391(1-2), 42-55. doi:10.1016/j.physa.2011.07.030

Cuesta-Frau, D., Murillo-Escobar, J. P., Orrego, D. A., & Delgado-Trejos, E. (2019). Embedded Dimension and Time Series Length. Practical Influence on Permutation Entropy and Its Applications. Entropy, 21(4), 385. doi:10.3390/e21040385

KumarSingh, B., Verma, K., & S. Thoke, A. (2015). Investigations on Impact of Feature Normalization Techniques on Classifier's Performance in Breast Tumor Classification. International Journal of Computer Applications, 116(19), 11-15. doi:10.5120/20443-2793

Talukder, B., W. Hipel, K., & W. vanLoon, G. (2017). Developing Composite Indicators for Agricultural Sustainability Assessment: Effect of Normalization and Aggregation Techniques. Resources, 6(4), 66. doi:10.3390/resources6040066

Tofallis, C. (2014). Add or Multiply? A Tutorial on Ranking and Choosing with Multiple Criteria. INFORMS Transactions on Education, 14(3), 109-119. doi:10.1287/ited.2013.0124

Henry, M., & Judge, G. (2019). Permutation Entropy and Information Recovery in Nonlinear Dynamic Economic Time Series. Econometrics, 7(1), 10. doi:10.3390/econometrics7010010

Zanin, M. (2008). Forbidden patterns in financial time series. Chaos: An Interdisciplinary Journal of Nonlinear Science, 18(1), 013119. doi:10.1063/1.2841197

Cuesta-Frau, D., Molina-Picó, A., Vargas, B., & González, P. (2019). Permutation Entropy: Enhancing Discriminating Power by Using Relative Frequencies Vector of Ordinal Patterns Instead of Their Shannon Entropy. Entropy, 21(10), 1013. doi:10.3390/e21101013

Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., & Elger, C. E. (2001). Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E, 64(6). doi:10.1103/physreve.64.061907

Bellegdi, S. A., & Arafat, S. M. A. (2017). Automatic Detection of Epilepsy Using EEG Energy and Frequency Bands. International Journal of Applied Mathematics, Electronics and Computers, 1(SpecialIssue), 36-41. doi:10.18100/ijamec.2017specialissue30468

Hussain, L., Aziz, W., Alowibdi, J. S., Habib, N., Rafique, M., Saeed, S., & Kazmi, S. Z. H. (2017). Symbolic time series analysis of electroencephalographic (EEG) epileptic seizure and brain dynamics with eye-open and eye-closed subjects during resting states. Journal of Physiological Anthropology, 36(1). doi:10.1186/s40101-017-0136-8

Cuesta–Frau, D., Miró–Martínez, P., Jordán Núñez, J., Oltra–Crespo, S., & Molina Picó, A. (2017). Noisy EEG signals classification based on entropy metrics. Performance assessment using first and second generation statistics. Computers in Biology and Medicine, 87, 141-151. doi:10.1016/j.compbiomed.2017.05.028

Sharmila, A. (2018). Epilepsy detection from EEG signals: a review. Journal of Medical Engineering & Technology, 42(5), 368-380. doi:10.1080/03091902.2018.1513576

Molina-Picó, A., Cuesta-Frau, D., Aboy, M., Crespo, C., Miró-Martínez, P., & Oltra-Crespo, S. (2011). Comparative study of approximate entropy and sample entropy robustness to spikes. Artificial Intelligence in Medicine, 53(2), 97-106. doi:10.1016/j.artmed.2011.06.007

Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., … Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet. Circulation, 101(23). doi:10.1161/01.cir.101.23.e215

Hausdorff, J. M., Purdon, P. L., Peng, C. K., Ladin, Z., Wei, J. Y., & Goldberger, A. L. (1996). Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations. Journal of Applied Physiology, 80(5), 1448-1457. doi:10.1152/jappl.1996.80.5.1448

Baumert, M., Czippelova, B., Ganesan, A., Schmidt, M., Zaunseder, S., & Javorka, M. (2014). Entropy Analysis of RR and QT Interval Variability during Orthostatic and Mental Stress in Healthy Subjects. Entropy, 16(12), 6384-6393. doi:10.3390/e16126384

Xia, Y., Yang, L., Zunino, L., Shi, H., Zhuang, Y., & Liu, C. (2018). Application of Permutation Entropy and Permutation Min-Entropy in Multiple Emotional States Analysis of RRI Time Series. Entropy, 20(3), 148. doi:10.3390/e20030148

Iyengar, N., Peng, C. K., Morin, R., Goldberger, A. L., & Lipsitz, L. A. (1996). Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 271(4), R1078-R1084. doi:10.1152/ajpregu.1996.271.4.r1078

Liu, C., Li, K., Zhao, L., Liu, F., Zheng, D., Liu, C., & Liu, S. (2013). Analysis of heart rate variability using fuzzy measure entropy. Computers in Biology and Medicine, 43(2), 100-108. doi:10.1016/j.compbiomed.2012.11.005

Bugenhagen, S. M., Cowley, A. W., & Beard, D. A. (2010). Identifying physiological origins of baroreflex dysfunction in salt-sensitive hypertension in the Dahl SS rat. Physiological Genomics, 42(1), 23-41. doi:10.1152/physiolgenomics.00027.2010

Bagnall, A., Lines, J., Bostrom, A., Large, J., & Keogh, E. (2016). The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Mining and Knowledge Discovery, 31(3), 606-660. doi:10.1007/s10618-016-0483-9

Yemini, E., Jucikas, T., Grundy, L. J., Brown, A. E. X., & Schafer, W. R. (2013). A database of Caenorhabditis elegans behavioral phenotypes. Nature Methods, 10(9), 877-879. doi:10.1038/nmeth.2560

Brown, A. E. X., Yemini, E. I., Grundy, L. J., Jucikas, T., & Schafer, W. R. (2012). A dictionary of behavioral motifs reveals clusters of genes affecting Caenorhabditis elegans locomotion. Proceedings of the National Academy of Sciences, 110(2), 791-796. doi:10.1073/pnas.1211447110

Cuesta-Frau, D., Novák, D., Burda, V., Molina-Picó, A., Vargas, B., Mraz, M., … Haluzik, M. (2018). Characterization of Artifact Influence on the Classification of Glucose Time Series Using Sample Entropy Statistics. Entropy, 20(11), 871. doi:10.3390/e20110871

Bürkner, P.-C., Doebler, P., & Holling, H. (2016). Optimal design of the Wilcoxon-Mann-Whitney-test. Biometrical Journal, 59(1), 25-40. doi:10.1002/bimj.201600022

Bian, Z., Ouyang, G., Li, Z., Li, Q., Wang, L., & Li, X. (2016). Weighted-Permutation Entropy Analysis of Resting State EEG from Diabetics with Amnestic Mild Cognitive Impairment. Entropy, 18(8), 307. doi:10.3390/e18080307

Deng, B., Liang, L., Li, S., Wang, R., Yu, H., Wang, J., & Wei, X. (2015). Complexity extraction of electroencephalograms in Alzheimer’s disease with weighted-permutation entropy. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(4), 043105. doi:10.1063/1.4917013

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem