- -

Growth of pineapple plantlets during acclimatisation can be monitored through automated image analysis of the canopy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Growth of pineapple plantlets during acclimatisation can be monitored through automated image analysis of the canopy

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Soto, Guillermo es_ES
dc.contributor.author Lorente, Gustavo es_ES
dc.contributor.author Mendoza, Jessica es_ES
dc.contributor.author Báez, Evelio Dany es_ES
dc.contributor.author Lorenzo, Carlos Manuel es_ES
dc.contributor.author Rodríguez, Romelio es_ES
dc.contributor.author Hajari, Elliosha es_ES
dc.contributor.author Vicente, Oscar es_ES
dc.contributor.author Lorenzo, José Carlos es_ES
dc.contributor.author Baez, Evelio Luis es_ES
dc.date.accessioned 2021-05-22T03:31:26Z
dc.date.available 2021-05-22T03:31:26Z
dc.date.issued 2020-10 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166636
dc.description.abstract [EN] Pineapple is an economically important tropical fruit crop, but the lack of adequate planting material limits its productivity. A range of micropropagation protocols has been developed over the years to address this shortfall. Still, the final stage of micropropagation, i.e. acclimatisation, remains a challenge as pineapple plantlets grow very slowly. Several studies have been conducted focusing on this phase and attempting to improve plantlet growth and establishment, which requires tools for the non-destructive evaluation of growth during acclimatisation. This report describes the use of semi-automated and automated image analysis to quantify canopy growth of pineapple plantlets, during five months of acclimatisation. The canopy area progressively increased during acclimatisation, particularly after 90 days. Regression analyses were performed to determine the relationships between the automated image analysis and morphological indicators of growth. The mathematical relationships between estimations of the canopy area and the fresh and dry weights of intact plantlets, middle-aged leaves (D leaves) and roots showed determination coefficients (R2) between 0.84 and 0.92. We propose an appropriate tool for the simple, objective and non-destructive evaluation of pineapple plantlets growth, which can be generally applied for plant phenotyping, to reduce costs and develop streamlined pipelines for the assessment of plant growth es_ES
dc.description.sponsorship This research was not covered by any specific grant but supported by internal funds from the Bioplant Centre (Cuba), the Agricultural Research Council-Tropical and Subtropical Crops (South Africa), and the Universitat Politecnica de Valencia (Spain). Authors are also grateful to Mrs Lelurlis Napoles for her experienced technical assistance. es_ES
dc.language Inglés es_ES
dc.publisher European Biotechnology Thematic Network Association es_ES
dc.relation.ispartof The Eurobiotech Journal es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Ananas comosus (L.) Merr es_ES
dc.subject Image analysis es_ES
dc.subject Acclimatisation es_ES
dc.subject Large-scale propagation es_ES
dc.subject Micropropagation es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Growth of pineapple plantlets during acclimatisation can be monitored through automated image analysis of the canopy es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.2478/ebtj-2020-0026 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Soto, G.; Lorente, G.; Mendoza, J.; Báez, ED.; Lorenzo, CM.; Rodríguez, R.; Hajari, E.... (2020). Growth of pineapple plantlets during acclimatisation can be monitored through automated image analysis of the canopy. The Eurobiotech Journal. 4(4):223-229. https://doi.org/10.2478/ebtj-2020-0026 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://sciendo.com/article/10.2478%2Febtj-2020-0026 es_ES
dc.description.upvformatpinicio 223 es_ES
dc.description.upvformatpfin 229 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 4 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2564-615X es_ES
dc.relation.pasarela S\421281 es_ES
dc.contributor.funder Centro de Bioplantas, Cuba es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Agricultural Research Council, Sudáfrica es_ES
dc.description.references Chen H, Hu B, Zhao L, Shi D, She Z, Huang X, Priyadarshani S, Niu X, Qin Y. Differential expression analysis of reference genes in pineapple (Ananas comosus l.) during reproductive development and response to abiotic stress, hormonal stimuli. Trop Plant Biol 2019; 12: 67-77. es_ES
dc.description.references Nath V, Kumar G, Pandey S, Pandey S. Impact of climate change on tropical fruit production systems and its mitigation strategies. In: Sheraz Mahdi S (ed.) Climate Change and Agriculture in India: Impact and Adaptation. 2019. Springer, Berlin, pp. 129-146. es_ES
dc.description.references Priyadarshani S, Cai H, Zhou Q, Liu Y, Cheng Y, Xiong J, Patson DL, Cao S, Zhao H, Qin Y. An efficient Agrobacterium mediated transformation of pineapple with GFP-tagged protein allows easy, non-destructive screening of transgenic pineapple plants. Biomolecules 2019; 9(10): 617. es_ES
dc.description.references Wali N. Pineapple (Ananas comosus). In: Nabavi S, Sanches Silva A (eds.) Nonvitamin and nonmineral nutritional nupplements. 2019. Elsevier, pp. 367-373. es_ES
dc.description.references Escalona M, Lorenzo JC, González B, Daquinta M, Borroto C, González JL, Desjardines Y. Pineapple micropropagation in temporary immersion systems. Plant Cell Rep 1999; 18: 743-748. es_ES
dc.description.references Gómez D, Escalante D, Hajari E, Vicente O, Sershen, Lorenzo JC. Assessing the effects of in vitro imposed water stress on pineapple growth in relation to biochemical stress indicators using polynomial regression analysis. Not Bot Horti Agrobot Cluj 2020; 48: 162-170. es_ES
dc.description.references Daquinta M, Benegas R. Brief review of tissue culture of pineapple. Pineap News 1997; 3: 7-9. es_ES
dc.description.references Botella J, Fairbairn D. Present and future potential of pineapple biotechnology. Acta Hort 2005; 622: 23-28. es_ES
dc.description.references Wang M-L, Uruu G, Xiong L, He X, Nagai C, Cheah K, Hu J, Nan G-L, Sipes B, Atkinson H. Production of transgenic pineapple (Ananas comosus (L.) Merr.) plants via adventitious bud regeneration. In Vitro Cell Dev Biol-Plant 2009; 45: 112-121. es_ES
dc.description.references Loyola-González O, Medina-Pérez MA, Hernández-Tamayo D, Monroy R, Carrasco-Ochoa JA, García-Borroto M. A pattern-based approach for detecting pneumatic failures on Temporary Immersion Bioreactors. Sensors 2019; 19(2): 414. es_ES
dc.description.references Parveen S, Mir H, Ranjan T, Pal AK, Kundu M. Effect of surface sterilants on in vitro establishment of pineapple (Ananas comosus (L.) Merill.) cv. Kew. Curr J Appl Sci Technol 2019; 33(2): 1-6. es_ES
dc.description.references Venâncio JB, Araújo WF, Chagas EA. Acclimatization of micropropagated seedlings of pineapple cultivars on organic substrates. Científica 2019; 47: 52-61. es_ES
dc.description.references Yanes-Paz E, González J, Sánchez R (2000) A technology of acclimatization of pineapple vitroplants. Pineap News 2000; 7: 5-6. es_ES
dc.description.references González R, Laudat T, Arzola M, Méndez R, Marrero P, Pulido L, Dibut B, Lorenzo JC. Effect of Azotobacter chroococcum on in vitro pineapple plants’ growth during acclimatization. In Vitro Cell Dev Biol-Plant 2010; 47(3): 387-390. es_ES
dc.description.references González R, Serrato R, Molina J, Aragón C, Olalde V, Pulido L, Dibut B, Lorenzo JC. Biochemical and physiological changes produced by Azotobacter chroococcum (INIFAT5 strain) on pineapple in vitro-plantlets during acclimatization. Acta Physiol Plant 2013; 35: 3483-3487. es_ES
dc.description.references Mengesha A, Ayenew B, Tadesse T. Acclimatization of in vitro propagated pineapple (Ananas comosus (L.), var. Smooth cayenne) plantlets to ex vitro condition in Ethiopia. Am J Plant Sci 2013; 4(2): 317-323. es_ES
dc.description.references Rodríguez-Escriba RC, Rodríguez R, López D, Lorente GY, Pino Y, Aragón CE, Garza Y, Podestá FE, González-Olmedo JL. High light intensity increases the CAM expression in “MD-2” micro-propagated pineapple plants at the end of the acclimatization stage. Am J Plant Sci 2015; 6(19): 3109-3118. es_ES
dc.description.references Rodríguez-Escriba RC, Rodríguez-Cartaya ID, Lorente GY, López D, Izquierdo RE, Borroto LS, Garza-García Y, Aragón CE, Podestá FE, Rodríguez R. Efecto del déficit hídrico sobre cambios morfo-fisiológicos y bioquímicos en plantas micropropagadas de piña MD-2 en la etapa final de aclimatización. Cult Trop 2016; 37: 64-73. es_ES
dc.description.references Lorente-González GY, Pino-Legrat Y, Rodríguez-Escriba RC, Pérez-Borroto LS, Nápoles-Borrero L, Mendoza-Rodríguez J, Cardoso D, Alonso A, Rodríguez-Sánchez R, González-Olmedo J. Foliar fertilization of ‘MD-2’ pineapple plants (Ananas comosus var. comosus) during the acclimatization phase. Newsletter of the Pineapple Working Group, International Society for Horticultural Science 2018; 25: 13-17. es_ES
dc.description.references Atkinson JA, Lobet G, Noll M, Meyer PE, Griffiths M, Wells DM. Combining semi-automated image analysis techniques with machine learning algorithms to accelerate large-scale genetic studies. GigaScience 2017; 6: gix084. es_ES
dc.description.references Pound MP, Atkinson JA, Townsend AJ, Wilson MH, Griffiths M, Jackson AS, Bulat A, Tzimiropoulos G, Wells DM, Murchie EH. Deep machine learning provides state-of-the-art performance in image-based plant phenotyping. GigaScience 2017; 6: gix083. es_ES
dc.description.references Gupta SD, Ibaraki Y, Pattanayak A. Development of a digital image analysis method for real-time estimation of chlorophyll content in micropropagated potato plants. Plant Biotech Rep 2013; 7: 91-97. es_ES
dc.description.references Niazian M, Sadat-Noori SA, Abdipour M, Tohidfar M, Mortazavian SMM. Image processing and artificial neural network-based models to measure and predict physical properties of embryogenic callus and number of somatic embryos in ajowan (Trachyspermum ammi (L.) Sprague). In Vitro Cell Dev Biol-Plant 2018; 54: 54-68. es_ES
dc.description.references Ollier M, Talle V, Brisset AL, Le Bihan Z, Duerr S, Lemmens M, Goudemand E, Robert O, Hilbert JL, Buerstmayr H. Whitened kernel surface: A fast and reliable method for assessing Fusarium severity on cereal grains by digital picture analysis. Plant Breed 2019; 138: 69-81. es_ES
dc.description.references Wang G, Sun Y, Wang J. Automatic image-based plant disease severity estimation using deep learning. Comp Intel Neurosci 2017; 2017: 2917536. es_ES
dc.description.references Asaari MSM, Mishra P, Mertens S, Dhondt S, Inzé D, Wuyts N, Scheunders P. Close-range hyperspectral image analysis for the early detection of stress responses in individual plants in a high-throughput phenotyping platform. ISPRS J Photogram Rem Sens 2018; 138: 121-138. es_ES
dc.description.references Py C, Lacoeuille JJ, Teisson C. L´ananas, sa culture, ses produits. Techniques agricoles et productions tropicales vol. 33. Maisoenneuve and Larose 1984; Paris, pp. 44-45. es_ES
dc.description.references Ivanov Z. The Agricultural Experimentation 1989. Pueblo y Educación, Havana, pp. 332. es_ES
dc.description.references Aguilar M, Pozo J, Aguilar F, García A, Fernández I, Negreiros J, Sánchez-Hermosilla J. Application of close-range photogrammetry and digital photography analysis for the estimation of leaf area index in a greenhouse tomato culture. Int Arch Photogram Rem Sens Spat Inf Sci 2010; 38(5): 5-10. es_ES
dc.description.references Minervini M, Abdelsamea MM, Tsaftaris SA. Image-based plant phenotyping with incremental learning and active contours. Ecol Inf 2014; 23: 35-48. es_ES
dc.description.references Minervini M, Giuffrida MV, Perata P, Tsaftaris SA. Phenotiki: An open software and hardware platform for affordable and easy image‐based phenotyping of rosette‐shaped plants. The Plant J 2017; 90: 204-216. es_ES
dc.description.references Ubbens J, Cieslak M, Prusinkiewicz P, Stavness I. The use of plant models in deep learning: an application to leaf counting in rosette plants. Plant Meth 2018; 14: 6. es_ES
dc.description.references Rincón Guerrero N, Olarte Quintero MA, Pérez Naranjo JC. Leaf area measurement in photographs taken with a webcam, a cell phone or a semi professional camera. Rev Fac Nac Agron Medellín 2012; 65: 6399-6405. es_ES
dc.description.references Guo W, Zheng B, Duan T, Fukatsu T, Chapman S, Ninomiya S (2017) EasyPCC: benchmark datasets and tools for high-throughput measurement of the plant canopy coverage ratio under field conditions. Sensors 2017; 17: 798. es_ES
dc.description.references Chien C-L, Tseng D-C (2011) Color image enhancement with exact HSI color model. Int J Innov Comp Inf Cont 2011; 7: 6691-6710. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem