Mostrar el registro sencillo del ítem
dc.contributor.author | Viana-Fons, Joan Dídac | es_ES |
dc.contributor.author | Gonzálvez-Maciá, José | es_ES |
dc.contributor.author | Payá-Herrero, Jorge | es_ES |
dc.date.accessioned | 2021-05-22T03:31:59Z | |
dc.date.available | 2021-05-22T03:31:59Z | |
dc.date.issued | 2020-10-01 | es_ES |
dc.identifier.issn | 0378-7788 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166652 | |
dc.description.abstract | [EN] This paper presents a systematic GIS-based methodology to obtain the shadow cast profile of a group of buildings on arbitrarily orientated and tilted surfaces. The model is integrated in the widely-employed 2D-GIS environment. Given its scalability, the methodology can be easily applied from a local level up to a district, city or even regional level. This work is of interest for a wide range of applications such as for instance in Solar Resource Assessments (SRA) in urban environments. The starting point is to use cadastral cartography and LiDAR altimetric data to obtain a 3D vector-based model of the buildings using high robust mode estimators. Once the geometry of the buildings is defined, analytical models are applied to calculate the shadow cast profile on any arbitrarily orientated and tilted surface of the surroundings. The model has been implemented in the R programming language. An extensive validation has been carried out for several buildings of Valencia (Spain) using CAD elevation views of the buildings and the SketchUp's shadow tool. The error of the vector-based city model is lower than 1% in all LiDAR datasets. The maximum error of the overall methodology, including both height and shadow models, is lower than 2%. (c) 2020 Elsevier B.V. All rights reserved. | es_ES |
dc.description.sponsorship | This work has been supported by the Generalitat Valenciana inside the program "Subvencions per a la contractacio de personal investigador de caracter predoctoral (ACIF/2019/239)". | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Energy and Buildings | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Urban shadow model | es_ES |
dc.subject | Urban solar irradiation | es_ES |
dc.subject | 3D city model | es_ES |
dc.subject | Daylight simulation | es_ES |
dc.subject | Model validation | es_ES |
dc.subject | GIS | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Development and validation in a 2D-GIS environment of a 3D shadow cast vector-based model on arbitrarily orientated and tilted surfaces | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.enbuild.2020.110258 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACIF%2F2019%2F239/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.description.bibliographicCitation | Viana-Fons, JD.; Gonzálvez-Maciá, J.; Payá-Herrero, J. (2020). Development and validation in a 2D-GIS environment of a 3D shadow cast vector-based model on arbitrarily orientated and tilted surfaces. Energy and Buildings. 224:1-10. https://doi.org/10.1016/j.enbuild.2020.110258 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.enbuild.2020.110258 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 224 | es_ES |
dc.relation.pasarela | S\427355 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | U. Nations, D. of Economic, S. Affairs, P. Division, World Urbanization Prospects: The 2018 Revision, New York, 2019. https://doi.org/10.18356/b9e995fe-en. | es_ES |
dc.description.references | Coalition for Urban Transitions, Climate Emergency, Urban Opportunity, London and Washington, DC, 2019. https://urbantransitions.global/urban-opportunity/. | es_ES |
dc.description.references | R. Billen, A.-F. Cutting-Decelle, O. Marina, J.-P. de Almeida, C. M., G. Falquet, T. Leduc, C. Métral, G. Moreau, J. Perret, G. Rabin, R. San Jose, I. Yatskiv, S. Zlatanova, 3D City Models and urban information: Current issues and perspectives, in: EDP Sciences, 2014: pp. I–118. https://doi.org/10.1051/tu0801/201400001. | es_ES |
dc.description.references | Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., & Çöltekin, A. (2015). Applications of 3D City Models: State of the Art Review. ISPRS International Journal of Geo-Information, 4(4), 2842-2889. doi:10.3390/ijgi4042842 | es_ES |
dc.description.references | Oregi, X., Hermoso, N., Prieto, I., Izkara, J. L., Mabe, L., & Sismanidis, P. (2018). Automatised and georeferenced energy assessment of an Antwerp district based on cadastral data. Energy and Buildings, 173, 176-194. doi:10.1016/j.enbuild.2018.05.018 | es_ES |
dc.description.references | Freitas, S., Catita, C., Redweik, P., & Brito, M. C. (2015). Modelling solar potential in the urban environment: State-of-the-art review. Renewable and Sustainable Energy Reviews, 41, 915-931. doi:10.1016/j.rser.2014.08.060 | es_ES |
dc.description.references | Machete, R., Falcão, A. P., Gomes, M. G., & Moret Rodrigues, A. (2018). The use of 3D GIS to analyse the influence of urban context on buildings’ solar energy potential. Energy and Buildings, 177, 290-302. doi:10.1016/j.enbuild.2018.07.064 | es_ES |
dc.description.references | Lima, I., Scalco, V., & Lamberts, R. (2019). Estimating the impact of urban densification on high-rise office building cooling loads in a hot and humid climate. Energy and Buildings, 182, 30-44. doi:10.1016/j.enbuild.2018.10.019 | es_ES |
dc.description.references | G. and S.R. Ward, Rendering with Radiance: The Art and Science of Lighting Visualization, Morgan Kaufman. (1998). | es_ES |
dc.description.references | Teller, J., & Azar, S. (2001). Townscope II—A computer system to support solar access decision-making. Solar Energy, 70(3), 187-200. doi:10.1016/s0038-092x(00)00097-9 | es_ES |
dc.description.references | Miguet, F., & Groleau, D. (2002). A daylight simulation tool for urban and architectural spaces—application to transmitted direct and diffuse light through glazing. Building and Environment, 37(8-9), 833-843. doi:10.1016/s0360-1323(02)00049-5 | es_ES |
dc.description.references | Trimble Inc., SketchUp, (2019). https://www.sketchup.com. | es_ES |
dc.description.references | Robert McNeel & Associates, Rhinoceros, (2019). https://www.rhino3d.com. | es_ES |
dc.description.references | Autodesk Inc., Autodesk Revit, (2020). https://www.autodesk.com/products/revit/overview. | es_ES |
dc.description.references | G. Desthieux, C. Carneiro, R. Camponovo, P. Ineichen, E. Morello, A. Boulmier, N. Abdennadher, S. Dervey, C. Ellert, Solar Energy Potential Assessment on Rooftops and Facades in Large Built Environments Based on LiDAR Data, Image Processing, and Cloud Computing. Methodological Background, Application, and Validation in Geneva (Solar Cadaster), Frontiers in Built Environment. 4 (2018) 14. https://doi.org/10.3389/fbuil.2018.00014. | es_ES |
dc.description.references | Vartholomaios, A. (2019). A machine learning approach to modelling solar irradiation of urban and terrain 3D models. Computers, Environment and Urban Systems, 78, 101387. doi:10.1016/j.compenvurbsys.2019.101387 | es_ES |
dc.description.references | Assouline, D., Mohajeri, N., & Scartezzini, J.-L. (2017). Quantifying rooftop photovoltaic solar energy potential: A machine learning approach. Solar Energy, 141, 278-296. doi:10.1016/j.solener.2016.11.045 | es_ES |
dc.description.references | J. Hofierka, M. Súri, The solar radiation model for Open source GIS: implementation and applications, in: Open Source GIS - GRASS Users Conference, 2002. | es_ES |
dc.description.references | J.G. Corripio, insol: Solar Radiation. R package version 1.2.1, (2019). https://cran.r-project.org/package=insol (accessed January 9, 2020). | es_ES |
dc.description.references | P. Fu, P.M. Rich, Design and Implementation of the Solar Analyst: an ArcView Extension for Modeling Solar Radiation at Landscape Scales, 19th Annual ESRI User Conference. (1999) 1–24. | es_ES |
dc.description.references | Esri, What is raster data? - Help | ArcGIS Desktop, (n.d.). https://desktop.arcgis.com/en/arcmap/latest/manage-data/raster-and-images/what-is-raster-data.htm (accessed January 9, 2020). | es_ES |
dc.description.references | Brito, M. C., Freitas, S., Guimarães, S., Catita, C., & Redweik, P. (2017). The importance of facades for the solar PV potential of a Mediterranean city using LiDAR data. Renewable Energy, 111, 85-94. doi:10.1016/j.renene.2017.03.085 | es_ES |
dc.description.references | Catita, C., Redweik, P., Pereira, J., & Brito, M. C. (2014). Extending solar potential analysis in buildings to vertical facades. Computers & Geosciences, 66, 1-12. doi:10.1016/j.cageo.2014.01.002 | es_ES |
dc.description.references | Brito, M. C., Redweik, P., Catita, C., Freitas, S., & Santos, M. (2019). 3D Solar Potential in the Urban Environment: A Case Study in Lisbon. Energies, 12(18), 3457. doi:10.3390/en12183457 | es_ES |
dc.description.references | Kaynak, S., Kaynak, B., & Özmen, A. (2018). A software tool development study for solar energy potential analysis. Energy and Buildings, 162, 134-143. doi:10.1016/j.enbuild.2017.12.033 | es_ES |
dc.description.references | Liang, J., Gong, J., Zhou, J., Ibrahim, A. N., & Li, M. (2015). An open-source 3D solar radiation model integrated with a 3D Geographic Information System. Environmental Modelling & Software, 64, 94-101. doi:10.1016/j.envsoft.2014.11.019 | es_ES |
dc.description.references | Liang, J., & Gong, J. (2017). A Sparse Voxel Octree-Based Framework for Computing Solar Radiation Using 3D City Models. ISPRS International Journal of Geo-Information, 6(4), 106. doi:10.3390/ijgi6040106 | es_ES |
dc.description.references | Hofierka, J., & Zlocha, M. (2012). A New 3-D Solar Radiation Model for 3-D City Models. Transactions in GIS, 16(5), 681-690. doi:10.1111/j.1467-9671.2012.01337.x | es_ES |
dc.description.references | QGIS Development Team, Vector Data - Documentation for QGIS 3.4, (n.d.). https://docs.qgis.org/3.4/en/docs/gentle_gis_introduction/vector_data.html (accessed January 9, 2020). | es_ES |
dc.description.references | Q.Y. Zhou, U. Neumann, Fast and extensible building modeling from airborne LiDAR data, in: GIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems, 2008: pp. 43–50. https://doi.org/10.1145/1463434.1463444. | es_ES |
dc.description.references | Jianhua Yan, Keqi Zhang, Chengcui Zhang, Shu-Ching Chen, & Narasimhan, G. (2015). Automatic Construction of 3-D Building Model From Airborne LIDAR Data Through 2-D Snake Algorithm. IEEE Transactions on Geoscience and Remote Sensing, 53(1), 3-14. doi:10.1109/tgrs.2014.2312393 | es_ES |
dc.description.references | Gröger, G., & Plümer, L. (2012). CityGML – Interoperable semantic 3D city models. ISPRS Journal of Photogrammetry and Remote Sensing, 71, 12-33. doi:10.1016/j.isprsjprs.2012.04.004 | es_ES |
dc.description.references | Wang, R., Peethambaran, J., & Chen, D. (2018). LiDAR Point Clouds to 3-D Urban Models$:$ A Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(2), 606-627. doi:10.1109/jstars.2017.2781132 | es_ES |
dc.description.references | Biljecki, F., Ledoux, H., Stoter, J., & Vosselman, G. (2016). The variants of an LOD of a 3D building model and their influence on spatial analyses. ISPRS Journal of Photogrammetry and Remote Sensing, 116, 42-54. doi:10.1016/j.isprsjprs.2016.03.003 | es_ES |
dc.description.references | Biljecki, F., Ledoux, H., & Stoter, J. (2016). An improved LOD specification for 3D building models. Computers, Environment and Urban Systems, 59, 25-37. doi:10.1016/j.compenvurbsys.2016.04.005 | es_ES |
dc.description.references | Weiler, K., & Atherton, P. (1977). Hidden surface removal using polygon area sorting. ACM SIGGRAPH Computer Graphics, 11(2), 214-222. doi:10.1145/965141.563896 | es_ES |
dc.description.references | Strzalka, A., Alam, N., Duminil, E., Coors, V., & Eicker, U. (2012). Large scale integration of photovoltaics in cities. Applied Energy, 93, 413-421. doi:10.1016/j.apenergy.2011.12.033 | es_ES |
dc.description.references | M. Dorman, E. Erell, A. Vulkan, I. Kloog, shadow: R Package for Geometric Shadow Calculations in an Urban Environment, The R J. 11 (2019) 287. https://doi.org/10.32614/rj-2019-024. | es_ES |
dc.description.references | Ledoux, H., & Meijers, M. (2011). Topologically consistent 3D city models obtained by extrusion. International Journal of Geographical Information Science, 25(4), 557-574. doi:10.1080/13658811003623277 | es_ES |
dc.description.references | M. Bartels, H. Wei, D.C. Mason, DTM generation from LIDAR data using skewness balancing, in: Proceedings - International Conference on Pattern Recognition, 2006: pp. 566–569. https://doi.org/10.1109/ICPR.2006.463. | es_ES |
dc.description.references | Bickel, D. R. (2003). Robust and efficient estimation of the mode of continuous data: the mode as a viable measure of central tendency. Journal of Statistical Computation and Simulation, 73(12), 899-912. doi:10.1080/0094965031000097809 | es_ES |
dc.description.references | Bickel, D. R., & Frühwirth, R. (2006). On a fast, robust estimator of the mode: Comparisons to other robust estimators with applications. Computational Statistics & Data Analysis, 50(12), 3500-3530. doi:10.1016/j.csda.2005.07.011 | es_ES |
dc.description.references | Esri, Obtaining elevation information for building footprints - Help | ArcGIS Desktop, (n.d.). https://desktop.arcgis.com/en/arcmap/latest/extensions/3d-analyst/3d-buildings-obtaining-elevation-information-for-building-footprints.htm (accessed January 9, 2020). | es_ES |
dc.description.references | S.J. Sheather, M.C. Jones, A Reliable Data-Based Bandwidth Selection Method for Kernel Density Estimation, Journal of the Royal Statistical Society. Series B (Methodological). 53 (1991) 683–690. http://www.jstor.org/stable/2345597. | es_ES |
dc.description.references | R Core Team, R: A Language and Environment for Statistical Computing, (2019). https://www.r-project.org/. | es_ES |
dc.description.references | Cheng, H., & Gupta, K. C. (1989). An Historical Note on Finite Rotations. Journal of Applied Mechanics, 56(1), 139-145. doi:10.1115/1.3176034 | es_ES |
dc.description.references | Instituto Geográfico Nacional, Plan Nacional de Ortofotografía Aérea - Especificaciones técnicas, (n.d.). https://pnoa.ign.es/especificaciones-tecnicas (accessed January 9, 2020). | es_ES |
dc.description.references | Yezioro, A., & Shaviv, E. (1994). Shading: A design tool for analyzing mutual shading between buildings. Solar Energy, 52(1), 27-37. doi:10.1016/0038-092x(94)90078-g | es_ES |