- -

Numerical evaluation of a solar-assisted jet-ejector refrigeration system: Screening of environmentally friendly refrigerants

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Numerical evaluation of a solar-assisted jet-ejector refrigeration system: Screening of environmentally friendly refrigerants

Show full item record

Galindo, J.; Dolz, V.; García-Cuevas González, LM.; Ponce-Mora, A. (2020). Numerical evaluation of a solar-assisted jet-ejector refrigeration system: Screening of environmentally friendly refrigerants. Energy Conversion and Management. 210:112681-112681. https://doi.org/10.1016/j.enconman.2020.112681

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166653

Files in this item

Item Metadata

Title: Numerical evaluation of a solar-assisted jet-ejector refrigeration system: Screening of environmentally friendly refrigerants
Author: Galindo, José Dolz, Vicente García-Cuevas González, Luis Miguel Ponce-Mora, Alberto
UPV Unit: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Issued date:
Abstract:
[EN] The present paper evaluates numerically the feasibility of a solar jet-ejector refrigeration system from an efficiency maximization perspective with three low environmental impact refrigerants, namely, R1234yf, R1234ze ...[+]
Subjects: Solar cooling , Jet-ejector refrigeration , Environmentally friendly refrigerants , Energy efficiency , Energy conversion , Solar thermal collector
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Energy Conversion and Management. (issn: 0196-8904 )
DOI: 10.1016/j.enconman.2020.112681
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.enconman.2020.112681
Project ID:
info:eu-repo/grantAgreement/GVA//ACIF%2F2018%2F124/
Thanks:
Authors want to acknowledge to the institution "Conselleria d'Educacio, Investigacio, Cultura i Esport de la Generalitat Valenciana" and its grant program "Subvenciones para la contratacion de personal investigador de ...[+]
Type: Artículo

References

Balaras, C. A., Grossman, G., Henning, H.-M., Infante Ferreira, C. A., Podesser, E., Wang, L., & Wiemken, E. (2007). Solar air conditioning in Europe—an overview. Renewable and Sustainable Energy Reviews, 11(2), 299-314. doi:10.1016/j.rser.2005.02.003

Kim, D. S., & Infante Ferreira, C. A. (2008). Solar refrigeration options – a state-of-the-art review. International Journal of Refrigeration, 31(1), 3-15. doi:10.1016/j.ijrefrig.2007.07.011

Kalkan, N., Young, E. A., & Celiktas, A. (2012). Solar thermal air conditioning technology reducing the footprint of solar thermal air conditioning. Renewable and Sustainable Energy Reviews, 16(8), 6352-6383. doi:10.1016/j.rser.2012.07.014 [+]
Balaras, C. A., Grossman, G., Henning, H.-M., Infante Ferreira, C. A., Podesser, E., Wang, L., & Wiemken, E. (2007). Solar air conditioning in Europe—an overview. Renewable and Sustainable Energy Reviews, 11(2), 299-314. doi:10.1016/j.rser.2005.02.003

Kim, D. S., & Infante Ferreira, C. A. (2008). Solar refrigeration options – a state-of-the-art review. International Journal of Refrigeration, 31(1), 3-15. doi:10.1016/j.ijrefrig.2007.07.011

Kalkan, N., Young, E. A., & Celiktas, A. (2012). Solar thermal air conditioning technology reducing the footprint of solar thermal air conditioning. Renewable and Sustainable Energy Reviews, 16(8), 6352-6383. doi:10.1016/j.rser.2012.07.014

Weber, C., Berger, M., Mehling, F., Heinrich, A., & Núñez, T. (2014). Solar cooling with water–ammonia absorption chillers and concentrating solar collector – Operational experience. International Journal of Refrigeration, 39, 57-76. doi:10.1016/j.ijrefrig.2013.08.022

Xu, S. M., Huang, X. D., & Du, R. (2011). An investigation of the solar powered absorption refrigeration system with advanced energy storage technology. Solar Energy, 85(9), 1794-1804. doi:10.1016/j.solener.2011.04.022

Ketfi, O., Merzouk, M., Merzouk, N. K., & Metenani, S. E. (2015). Performance of a Single Effect Solar Absorption Cooling System (Libr-H2O). Energy Procedia, 74, 130-138. doi:10.1016/j.egypro.2015.07.534

Chekirou, W., Boukheit, N., & Karaali, A. (2016). Performance improvement of adsorption solar cooling system. International Journal of Hydrogen Energy, 41(17), 7169-7174. doi:10.1016/j.ijhydene.2016.02.140

Cabrera, F. J., Fernández-García, A., Silva, R. M. P., & Pérez-García, M. (2013). Use of parabolic trough solar collectors for solar refrigeration and air-conditioning applications. Renewable and Sustainable Energy Reviews, 20, 103-118. doi:10.1016/j.rser.2012.11.081

Huang, B. ., Chang, J. ., Petrenko, V. ., & Zhuk, K. . (1998). A SOLAR EJECTOR COOLING SYSTEM USING REFRIGERANT R141b. Solar Energy, 64(4-6), 223-226. doi:10.1016/s0038-092x(98)00082-6

Bellos, E., & Tzivanidis, C. (2017). Optimum design of a solar ejector refrigeration system for various operating scenarios. Energy Conversion and Management, 154, 11-24. doi:10.1016/j.enconman.2017.10.057

Chen, J., Jarall, S., Havtun, H., & Palm, B. (2015). A review on versatile ejector applications in refrigeration systems. Renewable and Sustainable Energy Reviews, 49, 67-90. doi:10.1016/j.rser.2015.04.073

Pollerberg, C., Ali, A. H. H., & Dötsch, C. (2009). Solar driven steam jet ejector chiller. Applied Thermal Engineering, 29(5-6), 1245-1252. doi:10.1016/j.applthermaleng.2008.06.017

Varga, S., Oliveira, A. C., Palmero-Marrero, A., & Vrba, J. (2017). Preliminary experimental results with a solar driven ejector air conditioner in Portugal. Renewable Energy, 109, 83-92. doi:10.1016/j.renene.2017.03.016

Tashtoush, B., Alshare, A., & Al-Rifai, S. (2015). Hourly dynamic simulation of solar ejector cooling system using TRNSYS for Jordanian climate. Energy Conversion and Management, 100, 288-299. doi:10.1016/j.enconman.2015.05.010

Pollerberg, C., Heinzel, A., & Weidner, E. (2009). Model of a solar driven steam jet ejector chiller and investigation of its dynamic operational behaviour. Solar Energy, 83(5), 732-742. doi:10.1016/j.solener.2008.11.003

Tashtoush, B., Alshare, A., & Al-Rifai, S. (2015). Performance study of ejector cooling cycle at critical mode under superheated primary flow. Energy Conversion and Management, 94, 300-310. doi:10.1016/j.enconman.2015.01.039

Pereira, P. R., Varga, S., Soares, J., Oliveira, A. C., Lopes, A. M., de Almeida, F. G., & Carneiro, J. F. (2014). Experimental results with a variable geometry ejector using R600a as working fluid. International Journal of Refrigeration, 46, 77-85. doi:10.1016/j.ijrefrig.2014.06.016

Yen, R. H., Huang, B. J., Chen, C. Y., Shiu, T. Y., Cheng, C. W., Chen, S. S., & Shestopalov, K. (2013). Performance optimization for a variable throat ejector in a solar refrigeration system. International Journal of Refrigeration, 36(5), 1512-1520. doi:10.1016/j.ijrefrig.2013.04.005

Varga, S., Lebre, P. M. S., & Oliveira, A. C. (2013). CFD study of a variable area ratio ejector using R600a and R152a refrigerants. International Journal of Refrigeration, 36(1), 157-165. doi:10.1016/j.ijrefrig.2012.10.016

Allouche, Y., Bouden, C., & Varga, S. (2014). A CFD analysis of the flow structure inside a steam ejector to identify the suitable experimental operating conditions for a solar-driven refrigeration system. International Journal of Refrigeration, 39, 186-195. doi:10.1016/j.ijrefrig.2013.07.027

European Commission Joint Research Centre (JRC). PVGIS n.d. http://re.jrc.ec.europa.eu/pvgis.html [Accessed January 21, 2020].

Kalogirou SA. Solar thermal collectors and applications. vol. 30. 2004. DOI:10.1016/j.pecs.2004.02.001.

Belessiotis, V., Kalogirou, S., & Delyannis, E. (2016). Indirect Solar Desalination (MSF, MED, MVC, TVC). Thermal Solar Desalination, 283-326. doi:10.1016/b978-0-12-809656-7.00006-4

Ruangtrakoon, N., Aphornratana, S., & Sriveerakul, T. (2011). Experimental studies of a steam jet refrigeration cycle: Effect of the primary nozzle geometries to system performance. Experimental Thermal and Fluid Science, 35(4), 676-683. doi:10.1016/j.expthermflusci.2011.01.001

Varga, S., Oliveira, A. C., & Diaconu, B. (2009). Influence of geometrical factors on steam ejector performance – A numerical assessment. International Journal of Refrigeration, 32(7), 1694-1701. doi:10.1016/j.ijrefrig.2009.05.009

Shestopalov, K. O., Huang, B. J., Petrenko, V. O., & Volovyk, O. S. (2015). Investigation of an experimental ejector refrigeration machine operating with refrigerant R245fa at design and off-design working conditions. Part 2. Theoretical and experimental results. International Journal of Refrigeration, 55, 212-223. doi:10.1016/j.ijrefrig.2015.02.004

García del Valle, J., Saíz Jabardo, J. M., Castro Ruiz, F., & San José Alonso, J. F. (2014). An experimental investigation of a R-134a ejector refrigeration system. International Journal of Refrigeration, 46, 105-113. doi:10.1016/j.ijrefrig.2014.05.028

Chen, Z., Jin, X., Shimizu, A., Hihara, E., & Dang, C. (2017). Effects of the nozzle configuration on solar-powered variable geometry ejectors. Solar Energy, 150, 275-286. doi:10.1016/j.solener.2017.04.017

Gil, B., & Kasperski, J. (2015). Efficiency analysis of alternative refrigerants for ejector cooling cycles. Energy Conversion and Management, 94, 12-18. doi:10.1016/j.enconman.2015.01.056

Shirazi, A., Taylor, R. A., White, S. D., & Morrison, G. L. (2016). A systematic parametric study and feasibility assessment of solar-assisted single-effect, double-effect, and triple-effect absorption chillers for heating and cooling applications. Energy Conversion and Management, 114, 258-277. doi:10.1016/j.enconman.2016.01.070

Richter, M., McLinden, M. O., & Lemmon, E. W. (2011). Thermodynamic Properties of 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf): Vapor Pressure and p–ρ–T Measurements and an Equation of State. Journal of Chemical & Engineering Data, 56(7), 3254-3264. doi:10.1021/je200369m

Bücker, D., & Wagner, W. (2006). Reference Equations of State for the Thermodynamic Properties of Fluid Phase n-Butane and Isobutane. Journal of Physical and Chemical Reference Data, 35(2), 929-1019. doi:10.1063/1.1901687

Croquer, S., Poncet, S., & Aidoun, Z. (2016). Turbulence modeling of a single-phase R134a supersonic ejector. Part 1: Numerical benchmark. International Journal of Refrigeration, 61, 140-152. doi:10.1016/j.ijrefrig.2015.07.030

Hakkaki-Fard, A., Aidoun, Z., & Ouzzane, M. (2015). A computational methodology for ejector design and performance maximisation. Energy Conversion and Management, 105, 1291-1302. doi:10.1016/j.enconman.2015.08.070

Zegenhagen, M. T., & Ziegler, F. (2015). A one-dimensional model of a jet-ejector in critical double choking operation with R134a as a refrigerant including real gas effects. International Journal of Refrigeration, 55, 72-84. doi:10.1016/j.ijrefrig.2015.03.013

Galindo, J., Dolz, V., Tiseira, A., & Ponce-Mora, A. (2019). Thermodynamic analysis and optimization of a jet ejector refrigeration cycle used to cool down the intake air in an IC engine. International Journal of Refrigeration, 103, 253-263. doi:10.1016/j.ijrefrig.2019.04.019

Aittokoski, T., & Miettinen, K. (2010). Efficient evolutionary approach to approximate the Pareto-optimal set in multiobjective optimization, UPS-EMOA. Optimization Methods and Software, 25(6), 841-858. doi:10.1080/10556780903548265

Poles S. MOGA-II An improved Multi-Objective Genetic Algorithm. ModeFRONTIER User Man 2003:16.

Kasperski, J., & Gil, B. (2014). Performance estimation of ejector cycles using heavier hydrocarbon refrigerants. Applied Thermal Engineering, 71(1), 197-203. doi:10.1016/j.applthermaleng.2014.06.057

Chen, J., Havtun, H., & Palm, B. (2014). Screening of working fluids for the ejector refrigeration system. International Journal of Refrigeration, 47, 1-14. doi:10.1016/j.ijrefrig.2014.07.016

Nehdi, E., Kairouani, L., & Elakhdar, M. (2008). A solar ejector air-conditioning system using environment-friendly working fluids. International Journal of Energy Research, 32(13), 1194-1201. doi:10.1002/er.1413

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record