Mostrar el registro sencillo del ítem
dc.contributor.author | Salcedo-González, Mayra Liliana | es_ES |
dc.contributor.author | Suarez-Paez, Julio Ernesto | es_ES |
dc.contributor.author | Esteve Domingo, Manuel | es_ES |
dc.contributor.author | Gomez, J.A. | es_ES |
dc.contributor.author | Palau Salvador, Carlos Enrique | es_ES |
dc.date.accessioned | 2021-05-22T03:32:14Z | |
dc.date.available | 2021-05-22T03:32:14Z | |
dc.date.issued | 2020-03-10 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166659 | |
dc.description.abstract | [EN] This article shows a novel geo-visualization method of dynamic spatiotemporal data that allows mobility and concentration of criminal activity to be study. The method was developed using, only and significantly, real data of Santiago de Cali (Colombia), collected by the Colombian National Police (PONAL). This method constitutes a tool that allows criminal influx to be analyzed by concentration, zone, time slot and date. In addition to the field experience of police commanders, it allows patterns of criminal activity to be detected, thereby enabling a better distribution and management of police resources allocated to crime deterrence, prevention and control. Additionally, it may be applied to the concepts of safe city and smart city of the PONAL within the architecture of Command and Control System (C2S) of Command and Control Centers for Public Safety. Furthermore, it contributes to a better situational awareness and improves the future projection, agility, efficiency and decision-making processes of police officers, which are all essential for fulfillment of police missions against crime. Finally, this was developed using an open source software, it can be adapted to any other city, be used with real-time data and be implemented, if necessary, with the geographic software of any other C2S. | es_ES |
dc.description.sponsorship | This work was co-funded by the European Commission as part of H2020 call SEC-12-FCT-2016-thrtopic3 under the project VICTORIA (No. 740754). This publication reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein. The authors would like to thank Colombian National Police and its Office of Telematics for their support on development of this project. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | ISPRS International Journal of Geo-Information | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Smart city | es_ES |
dc.subject | Safe city | es_ES |
dc.subject | Command and Control Systems (C2S) | es_ES |
dc.subject | Command and Control Information System (C2IS) | es_ES |
dc.subject | Dynamic data geo-visualization | es_ES |
dc.subject | Crime mobility | es_ES |
dc.subject | Situational awareness | es_ES |
dc.subject | Situation understanding | es_ES |
dc.subject | Decision making improvement | es_ES |
dc.subject | Agility and efficiency improvement | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.subject.classification | INGENIERIA TELEMATICA | es_ES |
dc.title | A Novel Method of Spatiotemporal Dynamic Geo-Visualization of Criminal Data, Applied to Command and Control Centers for Public Safety | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/ijgi9030160 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/740754/EU/Video analysis for Investigation of Criminal and TerrORIst Activities/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Salcedo-González, ML.; Suarez-Paez, JE.; Esteve Domingo, M.; Gomez, J.; Palau Salvador, CE. (2020). A Novel Method of Spatiotemporal Dynamic Geo-Visualization of Criminal Data, Applied to Command and Control Centers for Public Safety. ISPRS International Journal of Geo-Information. 9(3):1-17. https://doi.org/10.3390/ijgi9030160 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/ijgi9030160 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.eissn | 2220-9964 | es_ES |
dc.relation.pasarela | S\405908 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.description.references | Lacinák, M., & Ristvej, J. (2017). Smart City, Safety and Security. Procedia Engineering, 192, 522-527. doi:10.1016/j.proeng.2017.06.090 | es_ES |
dc.description.references | Neumann, M., & Elsenbroich, C. (2016). Introduction: the societal dimensions of organized crime. Trends in Organized Crime, 20(1-2), 1-15. doi:10.1007/s12117-016-9294-z | es_ES |
dc.description.references | Phillips, P., & Lee, I. (2012). Mining co-distribution patterns for large crime datasets. Expert Systems with Applications, 39(14), 11556-11563. doi:10.1016/j.eswa.2012.03.071 | es_ES |
dc.description.references | Linning, S. J. (2015). Crime seasonality and the micro-spatial patterns of property crime in Vancouver, BC and Ottawa, ON. Journal of Criminal Justice, 43(6), 544-555. doi:10.1016/j.jcrimjus.2015.05.007 | es_ES |
dc.description.references | Spicer, V., & Song, J. (2017). The impact of transit growth on the perception of crime. Journal of Environmental Psychology, 54, 151-159. doi:10.1016/j.jenvp.2017.09.002 | es_ES |
dc.description.references | Beland, L.-P., & Brent, D. A. (2018). Traffic and crime. Journal of Public Economics, 160, 96-116. doi:10.1016/j.jpubeco.2018.03.002 | es_ES |
dc.description.references | Newspaper of National Circulation in Colombia, E.T. Robos en Trancones en El Tintal—Bogotá—.ELTIEMPO.COM https://www.eltiempo.com/bogota/robos-en-trancones-en-el-tintal-168226 | es_ES |
dc.description.references | Nueva Modalidad de Atraco a Conductores en Los Trancones de Bogotá|ELESPECTADOR.COM http://www.elespectador.com/noticias/bogota/nueva-modalidad-de-atraco-conductores-en-los-trancones-de-bogota-articulo-697716 | es_ES |
dc.description.references | Carrillo, P. E., Lopez-Luzuriaga, A., & Malik, A. S. (2018). Pollution or crime: The effect of driving restrictions on criminal activity. Journal of Public Economics, 164, 50-69. doi:10.1016/j.jpubeco.2018.05.007 | es_ES |
dc.description.references | Twinam, T. (2017). Danger zone: Land use and the geography of neighborhood crime. Journal of Urban Economics, 100, 104-119. doi:10.1016/j.jue.2017.05.006 | es_ES |
dc.description.references | Sadler, R. C., Pizarro, J., Turchan, B., Gasteyer, S. P., & McGarrell, E. F. (2017). Exploring the spatial-temporal relationships between a community greening program and neighborhood rates of crime. Applied Geography, 83, 13-26. doi:10.1016/j.apgeog.2017.03.017 | es_ES |
dc.description.references | Roth, R. E., Ross, K. S., Finch, B. G., Luo, W., & MacEachren, A. M. (2013). Spatiotemporal crime analysis in U.S. law enforcement agencies: Current practices and unmet needs. Government Information Quarterly, 30(3), 226-240. doi:10.1016/j.giq.2013.02.001 | es_ES |
dc.description.references | Sustainable Development Goals|UNDP https://www.undp.org/content/undp/en/home/sustainable-development-goals.html | es_ES |
dc.description.references | Giménez-Santana, A., Caplan, J. M., & Drawve, G. (2018). Risk Terrain Modeling and Socio-Economic Stratification: Identifying Risky Places for Violent Crime Victimization in Bogotá, Colombia. European Journal on Criminal Policy and Research, 24(4), 417-431. doi:10.1007/s10610-018-9374-5 | es_ES |
dc.description.references | Kim, S., Jeong, S., Woo, I., Jang, Y., Maciejewski, R., & Ebert, D. S. (2018). Data Flow Analysis and Visualization for Spatiotemporal Statistical Data without Trajectory Information. IEEE Transactions on Visualization and Computer Graphics, 24(3), 1287-1300. doi:10.1109/tvcg.2017.2666146 | es_ES |
dc.description.references | Kounadi, O., & Leitner, M. (2014). Spatial Information Divergence: Using Global and Local Indices to Compare Geographical Masks Applied to Crime Data. Transactions in GIS, 19(5), 737-757. doi:10.1111/tgis.12125 | es_ES |
dc.description.references | Khalid, S., Shoaib, F., Qian, T., Rui, Y., Bari, A. I., Sajjad, M., … Wang, J. (2017). Network Constrained Spatio-Temporal Hotspot Mapping of Crimes in Faisalabad. Applied Spatial Analysis and Policy, 11(3), 599-622. doi:10.1007/s12061-017-9230-x | es_ES |
dc.description.references | Lopez-Cuevas, A., Medina-Perez, M. A., Monroy, R., Ramirez-Marquez, J. E., & Trejo, L. A. (2018). FiToViz: A Visualisation Approach for Real-Time Risk Situation Awareness. IEEE Transactions on Affective Computing, 9(3), 372-382. doi:10.1109/taffc.2017.2741478 | es_ES |
dc.description.references | Xue, Y., & Brown, D. E. (2006). Spatial analysis with preference specification of latent decision makers for criminal event prediction. Decision Support Systems, 41(3), 560-573. doi:10.1016/j.dss.2004.06.007 | es_ES |
dc.description.references | Nakaya, T., & Yano, K. (2010). Visualising Crime Clusters in a Space-time Cube: An Exploratory Data-analysis Approach Using Space-time Kernel Density Estimation and Scan Statistics. Transactions in GIS, 14(3), 223-239. doi:10.1111/j.1467-9671.2010.01194.x | es_ES |
dc.description.references | Anuar, N. B., & Yap, B. W. (2018). Data Visualization of Violent Crime Hotspots in Malaysia. Soft Computing in Data Science, 350-363. doi:10.1007/978-981-13-3441-2_27 | es_ES |
dc.description.references | Malik, A., Maciejewski, R., Towers, S., McCullough, S., & Ebert, D. S. (2014). Proactive Spatiotemporal Resource Allocation and Predictive Visual Analytics for Community Policing and Law Enforcement. IEEE Transactions on Visualization and Computer Graphics, 20(12), 1863-1872. doi:10.1109/tvcg.2014.2346926 | es_ES |
dc.description.references | Arietta, S. M., Efros, A. A., Ramamoorthi, R., & Agrawala, M. (2014). City Forensics: Using Visual Elements to Predict Non-Visual City Attributes. IEEE Transactions on Visualization and Computer Graphics, 20(12), 2624-2633. doi:10.1109/tvcg.2014.2346446 | es_ES |
dc.description.references | Hu, Y., Wang, F., Guin, C., & Zhu, H. (2018). A spatio-temporal kernel density estimation framework for predictive crime hotspot mapping and evaluation. Applied Geography, 99, 89-97. doi:10.1016/j.apgeog.2018.08.001 | es_ES |
dc.description.references | Yang, D., Heaney, T., Tonon, A., Wang, L., & Cudré-Mauroux, P. (2017). CrimeTelescope: crime hotspot prediction based on urban and social media data fusion. World Wide Web, 21(5), 1323-1347. doi:10.1007/s11280-017-0515-4 | es_ES |
dc.description.references | ToppiReddy, H. K. R., Saini, B., & Mahajan, G. (2018). Crime Prediction & Monitoring Framework Based on Spatial Analysis. Procedia Computer Science, 132, 696-705. doi:10.1016/j.procs.2018.05.075 | es_ES |
dc.description.references | Devia, N., & Weber, R. (2013). Generating crime data using agent-based simulation. Computers, Environment and Urban Systems, 42, 26-41. doi:10.1016/j.compenvurbsys.2013.09.001 | es_ES |
dc.description.references | Kuo, P.-F., Lord, D., & Walden, T. D. (2013). Using geographical information systems to organize police patrol routes effectively by grouping hotspots of crash and crime data. Journal of Transport Geography, 30, 138-148. doi:10.1016/j.jtrangeo.2013.04.006 | es_ES |
dc.description.references | Camacho-Collados, M., & Liberatore, F. (2015). A Decision Support System for predictive police patrolling. Decision Support Systems, 75, 25-37. doi:10.1016/j.dss.2015.04.012 | es_ES |
dc.description.references | Kagawa, T., Saiki, S., & Nakamura, M. (2019). Analyzing street crimes in Kobe city using PRISM. International Journal of Web Information Systems, 15(2), 183-200. doi:10.1108/ijwis-04-2018-0032 | es_ES |
dc.description.references | Jentner, W., Sacha, D., Stoffel, F., Ellis, G., Zhang, L., & Keim, D. A. (2018). Making machine intelligence less scary for criminal analysts: reflections on designing a visual comparative case analysis tool. The Visual Computer, 34(9), 1225-1241. doi:10.1007/s00371-018-1483-0 | es_ES |
dc.description.references | Suarez-Paez, J., Salcedo-Gonzalez, M., Esteve, M., Gómez, J. A., Palau, C., & Pérez-Llopis, I. (2018). Reduced computational cost prototype for street theft detection based on depth decrement in Convolutional Neural Network. Application to Command and Control Information Systems (C2IS) in the National Police of Colombia. International Journal of Computational Intelligence Systems, 12(1), 123. doi:10.2991/ijcis.2018.25905186 | es_ES |
dc.description.references | Suarez-Paez, J., Salcedo-Gonzalez, M., Climente, A., Esteve, M., Gómez, J. A., Palau, C. E., & Pérez-Llopis, I. (2019). A Novel Low Processing Time System for Criminal Activities Detection Applied to Command and Control Citizen Security Centers. Information, 10(12), 365. doi:10.3390/info10120365 | es_ES |
dc.description.references | Esteve, M., Perez-Llopis, I., & Palau, C. E. (2013). Friendly Force Tracking COTS solution. IEEE Aerospace and Electronic Systems Magazine, 28(1), 14-21. doi:10.1109/maes.2013.6470440 | es_ES |
dc.description.references | Esteve, M., Perez-Llopis, I., Hernandez-Blanco, L. E., Palau, C. E., & Carvajal, F. (2007). SIMACOP: Small Units Management C4ISR System. Multimedia and Expo, 2007 IEEE International Conference on. doi:10.1109/icme.2007.4284862 | es_ES |
dc.description.references | OpenStreetMap http://www.openstreetmap.org | es_ES |
dc.subject.ods | 16.- Promover sociedades pacíficas e inclusivas para el desarrollo sostenible, facilitar acceso a la justicia para todos y crear instituciones eficaces, responsables e inclusivas a todos los niveles | es_ES |
dc.subject.ods | 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles | es_ES |