- -

A Novel Method of Spatiotemporal Dynamic Geo-Visualization of Criminal Data, Applied to Command and Control Centers for Public Safety

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Novel Method of Spatiotemporal Dynamic Geo-Visualization of Criminal Data, Applied to Command and Control Centers for Public Safety

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Salcedo-González, Mayra Liliana es_ES
dc.contributor.author Suarez-Paez, Julio Ernesto es_ES
dc.contributor.author Esteve Domingo, Manuel es_ES
dc.contributor.author Gomez, J.A. es_ES
dc.contributor.author Palau Salvador, Carlos Enrique es_ES
dc.date.accessioned 2021-05-22T03:32:14Z
dc.date.available 2021-05-22T03:32:14Z
dc.date.issued 2020-03-10 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166659
dc.description.abstract [EN] This article shows a novel geo-visualization method of dynamic spatiotemporal data that allows mobility and concentration of criminal activity to be study. The method was developed using, only and significantly, real data of Santiago de Cali (Colombia), collected by the Colombian National Police (PONAL). This method constitutes a tool that allows criminal influx to be analyzed by concentration, zone, time slot and date. In addition to the field experience of police commanders, it allows patterns of criminal activity to be detected, thereby enabling a better distribution and management of police resources allocated to crime deterrence, prevention and control. Additionally, it may be applied to the concepts of safe city and smart city of the PONAL within the architecture of Command and Control System (C2S) of Command and Control Centers for Public Safety. Furthermore, it contributes to a better situational awareness and improves the future projection, agility, efficiency and decision-making processes of police officers, which are all essential for fulfillment of police missions against crime. Finally, this was developed using an open source software, it can be adapted to any other city, be used with real-time data and be implemented, if necessary, with the geographic software of any other C2S. es_ES
dc.description.sponsorship This work was co-funded by the European Commission as part of H2020 call SEC-12-FCT-2016-thrtopic3 under the project VICTORIA (No. 740754). This publication reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein. The authors would like to thank Colombian National Police and its Office of Telematics for their support on development of this project. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof ISPRS International Journal of Geo-Information es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Smart city es_ES
dc.subject Safe city es_ES
dc.subject Command and Control Systems (C2S) es_ES
dc.subject Command and Control Information System (C2IS) es_ES
dc.subject Dynamic data geo-visualization es_ES
dc.subject Crime mobility es_ES
dc.subject Situational awareness es_ES
dc.subject Situation understanding es_ES
dc.subject Decision making improvement es_ES
dc.subject Agility and efficiency improvement es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title A Novel Method of Spatiotemporal Dynamic Geo-Visualization of Criminal Data, Applied to Command and Control Centers for Public Safety es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ijgi9030160 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/740754/EU/Video analysis for Investigation of Criminal and TerrORIst Activities/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Salcedo-González, ML.; Suarez-Paez, JE.; Esteve Domingo, M.; Gomez, J.; Palau Salvador, CE. (2020). A Novel Method of Spatiotemporal Dynamic Geo-Visualization of Criminal Data, Applied to Command and Control Centers for Public Safety. ISPRS International Journal of Geo-Information. 9(3):1-17. https://doi.org/10.3390/ijgi9030160 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ijgi9030160 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 2220-9964 es_ES
dc.relation.pasarela S\405908 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Lacinák, M., & Ristvej, J. (2017). Smart City, Safety and Security. Procedia Engineering, 192, 522-527. doi:10.1016/j.proeng.2017.06.090 es_ES
dc.description.references Neumann, M., & Elsenbroich, C. (2016). Introduction: the societal dimensions of organized crime. Trends in Organized Crime, 20(1-2), 1-15. doi:10.1007/s12117-016-9294-z es_ES
dc.description.references Phillips, P., & Lee, I. (2012). Mining co-distribution patterns for large crime datasets. Expert Systems with Applications, 39(14), 11556-11563. doi:10.1016/j.eswa.2012.03.071 es_ES
dc.description.references Linning, S. J. (2015). Crime seasonality and the micro-spatial patterns of property crime in Vancouver, BC and Ottawa, ON. Journal of Criminal Justice, 43(6), 544-555. doi:10.1016/j.jcrimjus.2015.05.007 es_ES
dc.description.references Spicer, V., & Song, J. (2017). The impact of transit growth on the perception of crime. Journal of Environmental Psychology, 54, 151-159. doi:10.1016/j.jenvp.2017.09.002 es_ES
dc.description.references Beland, L.-P., & Brent, D. A. (2018). Traffic and crime. Journal of Public Economics, 160, 96-116. doi:10.1016/j.jpubeco.2018.03.002 es_ES
dc.description.references Newspaper of National Circulation in Colombia, E.T. Robos en Trancones en El Tintal—Bogotá—.ELTIEMPO.COM https://www.eltiempo.com/bogota/robos-en-trancones-en-el-tintal-168226 es_ES
dc.description.references Nueva Modalidad de Atraco a Conductores en Los Trancones de Bogotá|ELESPECTADOR.COM http://www.elespectador.com/noticias/bogota/nueva-modalidad-de-atraco-conductores-en-los-trancones-de-bogota-articulo-697716 es_ES
dc.description.references Carrillo, P. E., Lopez-Luzuriaga, A., & Malik, A. S. (2018). Pollution or crime: The effect of driving restrictions on criminal activity. Journal of Public Economics, 164, 50-69. doi:10.1016/j.jpubeco.2018.05.007 es_ES
dc.description.references Twinam, T. (2017). Danger zone: Land use and the geography of neighborhood crime. Journal of Urban Economics, 100, 104-119. doi:10.1016/j.jue.2017.05.006 es_ES
dc.description.references Sadler, R. C., Pizarro, J., Turchan, B., Gasteyer, S. P., & McGarrell, E. F. (2017). Exploring the spatial-temporal relationships between a community greening program and neighborhood rates of crime. Applied Geography, 83, 13-26. doi:10.1016/j.apgeog.2017.03.017 es_ES
dc.description.references Roth, R. E., Ross, K. S., Finch, B. G., Luo, W., & MacEachren, A. M. (2013). Spatiotemporal crime analysis in U.S. law enforcement agencies: Current practices and unmet needs. Government Information Quarterly, 30(3), 226-240. doi:10.1016/j.giq.2013.02.001 es_ES
dc.description.references Sustainable Development Goals|UNDP https://www.undp.org/content/undp/en/home/sustainable-development-goals.html es_ES
dc.description.references Giménez-Santana, A., Caplan, J. M., & Drawve, G. (2018). Risk Terrain Modeling and Socio-Economic Stratification: Identifying Risky Places for Violent Crime Victimization in Bogotá, Colombia. European Journal on Criminal Policy and Research, 24(4), 417-431. doi:10.1007/s10610-018-9374-5 es_ES
dc.description.references Kim, S., Jeong, S., Woo, I., Jang, Y., Maciejewski, R., & Ebert, D. S. (2018). Data Flow Analysis and Visualization for Spatiotemporal Statistical Data without Trajectory Information. IEEE Transactions on Visualization and Computer Graphics, 24(3), 1287-1300. doi:10.1109/tvcg.2017.2666146 es_ES
dc.description.references Kounadi, O., & Leitner, M. (2014). Spatial Information Divergence: Using Global and Local Indices to Compare Geographical Masks Applied to Crime Data. Transactions in GIS, 19(5), 737-757. doi:10.1111/tgis.12125 es_ES
dc.description.references Khalid, S., Shoaib, F., Qian, T., Rui, Y., Bari, A. I., Sajjad, M., … Wang, J. (2017). Network Constrained Spatio-Temporal Hotspot Mapping of Crimes in Faisalabad. Applied Spatial Analysis and Policy, 11(3), 599-622. doi:10.1007/s12061-017-9230-x es_ES
dc.description.references Lopez-Cuevas, A., Medina-Perez, M. A., Monroy, R., Ramirez-Marquez, J. E., & Trejo, L. A. (2018). FiToViz: A Visualisation Approach for Real-Time Risk Situation Awareness. IEEE Transactions on Affective Computing, 9(3), 372-382. doi:10.1109/taffc.2017.2741478 es_ES
dc.description.references Xue, Y., & Brown, D. E. (2006). Spatial analysis with preference specification of latent decision makers for criminal event prediction. Decision Support Systems, 41(3), 560-573. doi:10.1016/j.dss.2004.06.007 es_ES
dc.description.references Nakaya, T., & Yano, K. (2010). Visualising Crime Clusters in a Space-time Cube: An Exploratory Data-analysis Approach Using Space-time Kernel Density Estimation and Scan Statistics. Transactions in GIS, 14(3), 223-239. doi:10.1111/j.1467-9671.2010.01194.x es_ES
dc.description.references Anuar, N. B., & Yap, B. W. (2018). Data Visualization of Violent Crime Hotspots in Malaysia. Soft Computing in Data Science, 350-363. doi:10.1007/978-981-13-3441-2_27 es_ES
dc.description.references Malik, A., Maciejewski, R., Towers, S., McCullough, S., & Ebert, D. S. (2014). Proactive Spatiotemporal Resource Allocation and Predictive Visual Analytics for Community Policing and Law Enforcement. IEEE Transactions on Visualization and Computer Graphics, 20(12), 1863-1872. doi:10.1109/tvcg.2014.2346926 es_ES
dc.description.references Arietta, S. M., Efros, A. A., Ramamoorthi, R., & Agrawala, M. (2014). City Forensics: Using Visual Elements to Predict Non-Visual City Attributes. IEEE Transactions on Visualization and Computer Graphics, 20(12), 2624-2633. doi:10.1109/tvcg.2014.2346446 es_ES
dc.description.references Hu, Y., Wang, F., Guin, C., & Zhu, H. (2018). A spatio-temporal kernel density estimation framework for predictive crime hotspot mapping and evaluation. Applied Geography, 99, 89-97. doi:10.1016/j.apgeog.2018.08.001 es_ES
dc.description.references Yang, D., Heaney, T., Tonon, A., Wang, L., & Cudré-Mauroux, P. (2017). CrimeTelescope: crime hotspot prediction based on urban and social media data fusion. World Wide Web, 21(5), 1323-1347. doi:10.1007/s11280-017-0515-4 es_ES
dc.description.references ToppiReddy, H. K. R., Saini, B., & Mahajan, G. (2018). Crime Prediction & Monitoring Framework Based on Spatial Analysis. Procedia Computer Science, 132, 696-705. doi:10.1016/j.procs.2018.05.075 es_ES
dc.description.references Devia, N., & Weber, R. (2013). Generating crime data using agent-based simulation. Computers, Environment and Urban Systems, 42, 26-41. doi:10.1016/j.compenvurbsys.2013.09.001 es_ES
dc.description.references Kuo, P.-F., Lord, D., & Walden, T. D. (2013). Using geographical information systems to organize police patrol routes effectively by grouping hotspots of crash and crime data. Journal of Transport Geography, 30, 138-148. doi:10.1016/j.jtrangeo.2013.04.006 es_ES
dc.description.references Camacho-Collados, M., & Liberatore, F. (2015). A Decision Support System for predictive police patrolling. Decision Support Systems, 75, 25-37. doi:10.1016/j.dss.2015.04.012 es_ES
dc.description.references Kagawa, T., Saiki, S., & Nakamura, M. (2019). Analyzing street crimes in Kobe city using PRISM. International Journal of Web Information Systems, 15(2), 183-200. doi:10.1108/ijwis-04-2018-0032 es_ES
dc.description.references Jentner, W., Sacha, D., Stoffel, F., Ellis, G., Zhang, L., & Keim, D. A. (2018). Making machine intelligence less scary for criminal analysts: reflections on designing a visual comparative case analysis tool. The Visual Computer, 34(9), 1225-1241. doi:10.1007/s00371-018-1483-0 es_ES
dc.description.references Suarez-Paez, J., Salcedo-Gonzalez, M., Esteve, M., Gómez, J. A., Palau, C., & Pérez-Llopis, I. (2018). Reduced computational cost prototype for street theft detection based on depth decrement in Convolutional Neural Network. Application to Command and Control Information Systems (C2IS) in the National Police of Colombia. International Journal of Computational Intelligence Systems, 12(1), 123. doi:10.2991/ijcis.2018.25905186 es_ES
dc.description.references Suarez-Paez, J., Salcedo-Gonzalez, M., Climente, A., Esteve, M., Gómez, J. A., Palau, C. E., & Pérez-Llopis, I. (2019). A Novel Low Processing Time System for Criminal Activities Detection Applied to Command and Control Citizen Security Centers. Information, 10(12), 365. doi:10.3390/info10120365 es_ES
dc.description.references Esteve, M., Perez-Llopis, I., & Palau, C. E. (2013). Friendly Force Tracking COTS solution. IEEE Aerospace and Electronic Systems Magazine, 28(1), 14-21. doi:10.1109/maes.2013.6470440 es_ES
dc.description.references Esteve, M., Perez-Llopis, I., Hernandez-Blanco, L. E., Palau, C. E., & Carvajal, F. (2007). SIMACOP: Small Units Management C4ISR System. Multimedia and Expo, 2007 IEEE International Conference on. doi:10.1109/icme.2007.4284862 es_ES
dc.description.references OpenStreetMap http://www.openstreetmap.org es_ES
dc.subject.ods 16.- Promover sociedades pacíficas e inclusivas para el desarrollo sostenible, facilitar acceso a la justicia para todos y crear instituciones eficaces, responsables e inclusivas a todos los niveles es_ES
dc.subject.ods 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem