Mostrar el registro sencillo del ítem
dc.contributor.author | Sapena Moll, Marta | es_ES |
dc.contributor.author | Ruiz Fernández, Luis Ángel | es_ES |
dc.contributor.author | Taubenböck, Hannes | es_ES |
dc.date.accessioned | 2021-05-22T03:32:18Z | |
dc.date.available | 2021-05-22T03:32:18Z | |
dc.date.issued | 2020-07-11 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166661 | |
dc.description.abstract | [EN] Manifold socio-economic processes shape the built and natural elements in urban areas. They thus influence both the living environment of urban dwellers and sustainability in many dimensions. Monitoring the development of the urban fabric and its relationships with socio-economic and environmental processes will help to elucidate their linkages and, thus, aid in the development of new strategies for more sustainable development. In this study, we identified empirical and significant relationships between income, inequality, GDP, air pollution and employment indicators and their change over time with the spatial organization of the built and natural elements in functional urban areas. We were able to demonstrate this in 32 countries using spatio-temporal metrics, using geoinformation from databases available worldwide. We employed random forest regression, and we were able to explain 32% to 68% of the variability of socio-economic variables. This confirms that spatial patterns and their change are linked to socio-economic indicators. We also identified the spatio-temporal metrics that were more relevant in the models: we found that urban compactness, concentration degree, the dispersion index, the densification of built-up growth, accessibility and land-use/land-cover density and change could be used as proxies for some socio-economic indicators. This study is a first and fundamental step for the identification of such relationships at a global scale. The proposed methodology is highly versatile, the inclusion of new datasets is straightforward, and the increasing availability of multi-temporal geospatial and socio-economic databases is expected to empirically boost the study of these relationships from a multi-temporal perspective in the near future. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | ISPRS International Journal of Geo-Information | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Urban growth | es_ES |
dc.subject | Socio-economic variables | es_ES |
dc.subject | Spatio-temporal metrics | es_ES |
dc.subject | Global analysis | es_ES |
dc.subject | IndiFrag | es_ES |
dc.subject | GHSL | es_ES |
dc.subject | OECD | es_ES |
dc.subject.classification | INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA | es_ES |
dc.title | Analyzing links between spatio-temporal metrics of built-up areas and socio-economic indicators on a semi-global scale | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/ijgi9070436 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria | es_ES |
dc.description.bibliographicCitation | Sapena Moll, M.; Ruiz Fernández, LÁ.; Taubenböck, H. (2020). Analyzing links between spatio-temporal metrics of built-up areas and socio-economic indicators on a semi-global scale. ISPRS International Journal of Geo-Information. 9(7):1-22. https://doi.org/10.3390/ijgi9070436 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/ijgi9070436 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 22 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 7 | es_ES |
dc.identifier.eissn | 2220-9964 | es_ES |
dc.relation.pasarela | S\415497 | es_ES |
dc.description.references | Zhu, Z., Zhou, Y., Seto, K. C., Stokes, E. C., Deng, C., Pickett, S. T. A., & Taubenböck, H. (2019). Understanding an urbanizing planet: Strategic directions for remote sensing. Remote Sensing of Environment, 228, 164-182. doi:10.1016/j.rse.2019.04.020 | es_ES |
dc.description.references | Wentz, E. A., York, A. M., Alberti, M., Conrow, L., Fischer, H., Inostroza, L., … Taubenböck, H. (2018). Six fundamental aspects for conceptualizing multidimensional urban form: A spatial mapping perspective. Landscape and Urban Planning, 179, 55-62. doi:10.1016/j.landurbplan.2018.07.007 | es_ES |
dc.description.references | Wentz, E., Anderson, S., Fragkias, M., Netzband, M., Mesev, V., Myint, S., … Seto, K. (2014). Supporting Global Environmental Change Research: A Review of Trends and Knowledge Gaps in Urban Remote Sensing. Remote Sensing, 6(5), 3879-3905. doi:10.3390/rs6053879 | es_ES |
dc.description.references | Allen, L., Williams, J., Townsend, N., Mikkelsen, B., Roberts, N., Foster, C., & Wickramasinghe, K. (2017). Socioeconomic status and non-communicable disease behavioural risk factors in low-income and lower-middle-income countries: a systematic review. The Lancet Global Health, 5(3), e277-e289. doi:10.1016/s2214-109x(17)30058-x | es_ES |
dc.description.references | Belsky, D. W., Caspi, A., Arseneault, L., Corcoran, D. L., Domingue, B. W., Harris, K. M., … Odgers, C. L. (2019). Genetics and the geography of health, behaviour and attainment. Nature Human Behaviour, 3(6), 576-586. doi:10.1038/s41562-019-0562-1 | es_ES |
dc.description.references | Villeneuve, P. J., Jerrett, M., G. Su, J., Burnett, R. T., Chen, H., Wheeler, A. J., & Goldberg, M. S. (2012). A cohort study relating urban green space with mortality in Ontario, Canada. Environmental Research, 115, 51-58. doi:10.1016/j.envres.2012.03.003 | es_ES |
dc.description.references | Patz, J. A., Daszak, P., Tabor, G. M., Aguirre, A. A., Pearl, M., … Epstein, J. (2004). Unhealthy Landscapes: Policy Recommendations on Land Use Change and Infectious Disease Emergence. Environmental Health Perspectives, 112(10), 1092-1098. doi:10.1289/ehp.6877 | es_ES |
dc.description.references | Wilkinson, D. A., Marshall, J. C., French, N. P., & Hayman, D. T. S. (2018). Habitat fragmentation, biodiversity loss and the risk of novel infectious disease emergence. Journal of The Royal Society Interface, 15(149), 20180403. doi:10.1098/rsif.2018.0403 | es_ES |
dc.description.references | Zohdy, S., Schwartz, T. S., & Oaks, J. R. (2019). The Coevolution Effect as a Driver of Spillover. Trends in Parasitology, 35(6), 399-408. doi:10.1016/j.pt.2019.03.010 | es_ES |
dc.description.references | Watmough, G. R., Atkinson, P. M., Saikia, A., & Hutton, C. W. (2016). Understanding the Evidence Base for Poverty–Environment Relationships using Remotely Sensed Satellite Data: An Example from Assam, India. World Development, 78, 188-203. doi:10.1016/j.worlddev.2015.10.031 | es_ES |
dc.description.references | Duque, J. C., Patino, J. E., Ruiz, L. A., & Pardo-Pascual, J. E. (2015). Measuring intra-urban poverty using land cover and texture metrics derived from remote sensing data. Landscape and Urban Planning, 135, 11-21. doi:10.1016/j.landurbplan.2014.11.009 | es_ES |
dc.description.references | Venerandi, A., Quattrone, G., & Capra, L. (2018). A scalable method to quantify the relationship between urban form and socio-economic indexes. EPJ Data Science, 7(1). doi:10.1140/epjds/s13688-018-0132-1 | es_ES |
dc.description.references | Arribas-Bel, D., Patino, J. E., & Duque, J. C. (2017). Remote sensing-based measurement of Living Environment Deprivation: Improving classical approaches with machine learning. PLOS ONE, 12(5), e0176684. doi:10.1371/journal.pone.0176684 | es_ES |
dc.description.references | Faisal, K., Shaker, A., & Habbani, S. (2016). Modeling the Relationship between the Gross Domestic Product and Built-Up Area Using Remote Sensing and GIS Data: A Case Study of Seven Major Cities in Canada. ISPRS International Journal of Geo-Information, 5(3), 23. doi:10.3390/ijgi5030023 | es_ES |
dc.description.references | Liang, H., Guo, Z., Wu, J., & Chen, Z. (2020). GDP spatialization in Ningbo City based on NPP/VIIRS night-time light and auxiliary data using random forest regression. Advances in Space Research, 65(1), 481-493. doi:10.1016/j.asr.2019.09.035 | es_ES |
dc.description.references | Weigand, M., Wurm, M., Dech, S., & Taubenböck, H. (2019). Remote Sensing in Environmental Justice Research—A Review. ISPRS International Journal of Geo-Information, 8(1), 20. doi:10.3390/ijgi8010020 | es_ES |
dc.description.references | McCarty, J., & Kaza, N. (2015). Urban form and air quality in the United States. Landscape and Urban Planning, 139, 168-179. doi:10.1016/j.landurbplan.2015.03.008 | es_ES |
dc.description.references | Hankey, S., & Marshall, J. D. (2017). Urban Form, Air Pollution, and Health. Current Environmental Health Reports, 4(4), 491-503. doi:10.1007/s40572-017-0167-7 | es_ES |
dc.description.references | Olsen, J. R., Nicholls, N., & Mitchell, R. (2019). Are urban landscapes associated with reported life satisfaction and inequalities in life satisfaction at the city level? A cross-sectional study of 66 European cities. Social Science & Medicine, 226, 263-274. doi:10.1016/j.socscimed.2019.03.009 | es_ES |
dc.description.references | Sapena, M., Ruiz, L. A., & Goerlich, F. J. (2016). ANALYSING RELATIONSHIPS BETWEEN URBAN LAND USE FRAGMENTATION METRICS AND SOCIO-ECONOMIC VARIABLES. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B8, 1029-1036. doi:10.5194/isprsarchives-xli-b8-1029-2016 | es_ES |
dc.description.references | Stokes, E. C., & Seto, K. C. (2019). Characterizing and measuring urban landscapes for sustainability. Environmental Research Letters, 14(4), 045002. doi:10.1088/1748-9326/aafab8 | es_ES |
dc.description.references | De Leeuw, J., Georgiadou, Y., Kerle, N., De Gier, A., Inoue, Y., Ferwerda, J., … Narantuya, D. (2010). The Function of Remote Sensing in Support of Environmental Policy. Remote Sensing, 2(7), 1731-1750. doi:10.3390/rs2071731 | es_ES |
dc.description.references | Taubenböck, H., Ferstl, J., & Dech, S. (2017). Regions Set in Stone—Delimiting and Categorizing Regions in Europe by Settlement Patterns Derived from EO-Data. ISPRS International Journal of Geo-Information, 6(2), 55. doi:10.3390/ijgi6020055 | es_ES |
dc.description.references | Chen, X., & Nordhaus, W. D. (2011). Using luminosity data as a proxy for economic statistics. Proceedings of the National Academy of Sciences, 108(21), 8589-8594. doi:10.1073/pnas.1017031108 | es_ES |
dc.description.references | Rimal, B., Zhang, L., Keshtkar, H., Wang, N., & Lin, Y. (2017). Monitoring and Modeling of Spatiotemporal Urban Expansion and Land-Use/Land-Cover Change Using Integrated Markov Chain Cellular Automata Model. ISPRS International Journal of Geo-Information, 6(9), 288. doi:10.3390/ijgi6090288 | es_ES |
dc.description.references | Oldekop, J. A., Sims, K. R. E., Karna, B. K., Whittingham, M. J., & Agrawal, A. (2019). Reductions in deforestation and poverty from decentralized forest management in Nepal. Nature Sustainability, 2(5), 421-428. doi:10.1038/s41893-019-0277-3 | es_ES |
dc.description.references | Sims, K. R. E., Thompson, J. R., Meyer, S. R., Nolte, C., & Plisinski, J. S. (2019). Assessing the local economic impacts of land protection. Conservation Biology, 33(5), 1035-1044. doi:10.1111/cobi.13318 | es_ES |
dc.description.references | Lobo, J., Alberti, M., Allen-Dumas, M., Arcaute, E., Barthelemy, M., Bojorquez Tapia, L. A., … Youn, H. (2020). Urban Science: Integrated Theory from the First Cities to Sustainable Metropolises. SSRN Electronic Journal. doi:10.2139/ssrn.3526940 | es_ES |
dc.description.references | Seto, K. C., Golden, J. S., Alberti, M., & Turner, B. L. (2017). Sustainability in an urbanizing planet. Proceedings of the National Academy of Sciences, 114(34), 8935-8938. doi:10.1073/pnas.1606037114 | es_ES |
dc.description.references | Cities (Urban Audit)https://ec.europa.eu/eurostat/web/cities/background | es_ES |
dc.description.references | Metropolitan Areas, OECD Regional Statistics [Database]http://dx.doi.org/10.1787/data-00531-en | es_ES |
dc.description.references | Eurostat, Geographical Information and Mapshttps://ec.europa.eu/eurostat/web/gisco/gisco-activities/integrating-statistics-geospatial-information/geostat-initiative | es_ES |
dc.description.references | NASA Socioeconomic Data and Applications Center. U.S. Census Gridshttps://sedac.ciesin.columbia.edu/ | es_ES |
dc.description.references | Esch, T., Taubenböck, H., Roth, A., Heldens, W., Felbier, A., Thiel, M., … Dech, S. (2012). TanDEM-X mission—new perspectives for the inventory and monitoring of global settlement patterns. Journal of Applied Remote Sensing, 6(1), 061702-1. doi:10.1117/1.jrs.6.061702 | es_ES |
dc.description.references | GHS-BUILT R2018A—GHS Built-Up Grid, Derived from Landsat, Multitemporal (1975-1990-2000-2014). European Commission, Joint Research Centre (JRC) [Dataset]http://data.europa.eu/89h/jrc-ghsl-10007 | es_ES |
dc.description.references | Chen, J., Cao, X., Peng, S., & Ren, H. (2017). Analysis and Applications of GlobeLand30: A Review. ISPRS International Journal of Geo-Information, 6(8), 230. doi:10.3390/ijgi6080230 | es_ES |
dc.description.references | Land Cover CCI Product User Guide Version 2http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf | es_ES |
dc.description.references | Bechtel, B., Alexander, P., Böhner, J., Ching, J., Conrad, O., Feddema, J., … Stewart, I. (2015). Mapping Local Climate Zones for a Worldwide Database of the Form and Function of Cities. ISPRS International Journal of Geo-Information, 4(1), 199-219. doi:10.3390/ijgi4010199 | es_ES |
dc.description.references | Cao, W., Dong, L., Wu, L., & Liu, Y. (2020). Quantifying urban areas with multi-source data based on percolation theory. Remote Sensing of Environment, 241, 111730. doi:10.1016/j.rse.2020.111730 | es_ES |
dc.description.references | Qiu, C., Schmitt, M., Geiß, C., Chen, T.-H. K., & Zhu, X. X. (2020). A framework for large-scale mapping of human settlement extent from Sentinel-2 images via fully convolutional neural networks. ISPRS Journal of Photogrammetry and Remote Sensing, 163, 152-170. doi:10.1016/j.isprsjprs.2020.01.028 | es_ES |
dc.description.references | The Metropolitan Database. Metadata and Release Noteshttp://stats.oecd.org/wbos/fileview2.aspx?IDFile=4aed3009-6020-48f3-8eeb-e01a8e5f61c4 | es_ES |
dc.description.references | Gross Domestic Product (GDP) (Indicator)https://doi.org/10.1787/dc2f7aec-en | es_ES |
dc.description.references | Income Inequality (Indicator)https://doi.org/10.1787/459aa7f1-en | es_ES |
dc.description.references | Air pollution Exposure (Indicator)https://doi.org/10.1787/8d9dcc33-en | es_ES |
dc.description.references | Employment Rate (Indicator)https://doi.org/10.1787/1de68a9b-en | es_ES |
dc.description.references | Redefining “Urban”: A New Way to Measure Metropolitan Areas, OECD Publishinghttps://doi.org/10.1787/9789264174108-en | es_ES |
dc.description.references | Meijer, J. R., Huijbregts, M. A. J., Schotten, K. C. G. J., & Schipper, A. M. (2018). Global patterns of current and future road infrastructure. Environmental Research Letters, 13(6), 064006. doi:10.1088/1748-9326/aabd42 | es_ES |
dc.description.references | Sapena Moll, M., & Ruiz Fernández, L. Á. (2015). Descripción y cálculo de índices de fragmentación urbana: Herramienta IndiFrag. Revista de Teledetección, (43), 77. doi:10.4995/raet.2015.3476 | es_ES |
dc.description.references | Urban morphological zones 2006. European Environment Agencyhttps://www.eea.europa.eu/data-and-maps/data/urban-morphological-zones-2006-1 | es_ES |
dc.description.references | Taubenböck, H., Wiesner, M., Felbier, A., Marconcini, M., Esch, T., & Dech, S. (2014). New dimensions of urban landscapes: The spatio-temporal evolution from a polynuclei area to a mega-region based on remote sensing data. Applied Geography, 47, 137-153. doi:10.1016/j.apgeog.2013.12.002 | es_ES |
dc.description.references | SCHUMM, S. A. (1956). EVOLUTION OF DRAINAGE SYSTEMS AND SLOPES IN BADLANDS AT PERTH AMBOY, NEW JERSEY. Geological Society of America Bulletin, 67(5), 597. doi:10.1130/0016-7606(1956)67[597:eodsas]2.0.co;2 | es_ES |
dc.description.references | Sapena, M., & Ruiz, L. Á. (2019). Analysis of land use/land cover spatio-temporal metrics and population dynamics for urban growth characterization. Computers, Environment and Urban Systems, 73, 27-39. doi:10.1016/j.compenvurbsys.2018.08.001 | es_ES |
dc.description.references | Breiman, L. (2001). Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author). Statistical Science, 16(3). doi:10.1214/ss/1009213726 | es_ES |
dc.description.references | GONZALEZ, J., & LEBOULLUEC, A. (2019). Crime Prediction and Socio-Demographic Factors: A Comparative Study of Machine Learning Regression-Based Algorithms. Journal of Applied Computer Science & Mathematics, 13(1), 13-18. doi:10.4316/jacsm.201901002 | es_ES |
dc.description.references | Paul, S. S., Coops, N. C., Johnson, M. S., Krzic, M., Chandna, A., & Smukler, S. M. (2020). Mapping soil organic carbon and clay using remote sensing to predict soil workability for enhanced climate change adaptation. Geoderma, 363, 114177. doi:10.1016/j.geoderma.2020.114177 | es_ES |
dc.description.references | Breiman, L. (2001). Machine Learning, 45(1), 5-32. doi:10.1023/a:1010933404324 | es_ES |
dc.description.references | How to Normalize the RMSEhttps://www.marinedatascience.co/blog/2019/01/07/normalizing-the-rmse/ | es_ES |
dc.description.references | Probst, P., Wright, M. N., & Boulesteix, A. (2019). Hyperparameters and tuning strategies for random forest. WIREs Data Mining and Knowledge Discovery, 9(3). doi:10.1002/widm.1301 | es_ES |
dc.description.references | Salvati, L., & Carlucci, M. (2015). Patterns of Sprawl: The Socioeconomic and Territorial Profile of Dispersed Urban Areas in Italy. Regional Studies, 50(8), 1346-1359. doi:10.1080/00343404.2015.1009435 | es_ES |
dc.description.references | Weilenmann, B., Seidl, I., & Schulz, T. (2017). The socio-economic determinants of urban sprawl between 1980 and 2010 in Switzerland. Landscape and Urban Planning, 157, 468-482. doi:10.1016/j.landurbplan.2016.08.002 | es_ES |
dc.description.references | Huang, J., Lu, X. X., & Sellers, J. M. (2007). A global comparative analysis of urban form: Applying spatial metrics and remote sensing. Landscape and Urban Planning, 82(4), 184-197. doi:10.1016/j.landurbplan.2007.02.010 | es_ES |
dc.description.references | Angel, S., Arango Franco, S., Liu, Y., & Blei, A. M. (2020). The shape compactness of urban footprints. Progress in Planning, 139, 100429. doi:10.1016/j.progress.2018.12.001 | es_ES |
dc.description.references | Bechle, M. J., Millet, D. B., & Marshall, J. D. (2011). Effects of Income and Urban Form on Urban NO2: Global Evidence from Satellites. Environmental Science & Technology, 45(11), 4914-4919. doi:10.1021/es103866b | es_ES |
dc.description.references | Meneses, B., Reis, E., Pereira, S., Vale, M., & Reis, R. (2017). Understanding Driving Forces and Implications Associated with the Land Use and Land Cover Changes in Portugal. Sustainability, 9(3), 351. doi:10.3390/su9030351 | es_ES |
dc.description.references | Corbane, C., Pesaresi, M., Kemper, T., Politis, P., Florczyk, A. J., Syrris, V., … Soille, P. (2019). Automated global delineation of human settlements from 40 years of Landsat satellite data archives. Big Earth Data, 3(2), 140-169. doi:10.1080/20964471.2019.1625528 | es_ES |
dc.subject.ods | 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles | es_ES |