- -

Optimisation of the distribution of power from a photovoltaic generator between two pumps working in parallel

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimisation of the distribution of power from a photovoltaic generator between two pumps working in parallel

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gasque Albalate, Maria es_ES
dc.contributor.author González Altozano, Pablo es_ES
dc.contributor.author Gutiérrez-Colomer, Rosa Penélope es_ES
dc.contributor.author García-Marí, Eugenio es_ES
dc.date.accessioned 2021-05-25T03:32:08Z
dc.date.available 2021-05-25T03:32:08Z
dc.date.issued 2020-03-01 es_ES
dc.identifier.issn 0038-092X es_ES
dc.identifier.uri http://hdl.handle.net/10251/166737
dc.description.abstract [EN] In this work, a method for distributing the power generated in a photovoltaic pumping system equipped with two equal pumps, working in parallel is analysed. For this purpose, a system equipped with two pumping groups 0.75 kW each was investigated. Experimental tests at five different working frequencies (30 to 50 Hz), and at six pumping heads (18 to 48 m) were carried out. The main objective of this paper is to establish a strategy for the distribution of the generated power that maximises the flow rate from the set of two pumps. This distribution depends both on the available electric power and on the pumping head. The results show some differences between higher and lower pumping heads, but in both cases for lower power values, the strategy involves the operation of a single pump with the limitation that the power assigned to this pump cannot exceed the maximum value (P-max). However, if the available power exceeds a certain value, referred to as P-e, it must then be distributed at 50% between the two pumps. Thus, there is no power distribution ratio other than 0 and 50% that maximises the flow rate, except that required to limit the power assigned to one of the pumps to P-max. It was proven that the optimal distribution strategy for the available power depends on whether P-e > P-max (for higher pumping heads) or P-e < P-max (in case of lower heads). In practice, it is easy to determine which case applies using a simple pumping test. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Solar Energy es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Pumping system es_ES
dc.subject Power optimisation es_ES
dc.subject Multi-pump system es_ES
dc.subject Parallel pumps es_ES
dc.subject.classification INGENIERIA AGROFORESTAL es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Optimisation of the distribution of power from a photovoltaic generator between two pumps working in parallel es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.solener.2020.01.013 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Rural y Agroalimentaria - Departament d'Enginyeria Rural i Agroalimentària es_ES
dc.description.bibliographicCitation Gasque Albalate, M.; González Altozano, P.; Gutiérrez-Colomer, RP.; García-Marí, E. (2020). Optimisation of the distribution of power from a photovoltaic generator between two pumps working in parallel. Solar Energy. 198:324-334. https://doi.org/10.1016/j.solener.2020.01.013 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.solener.2020.01.013 es_ES
dc.description.upvformatpinicio 324 es_ES
dc.description.upvformatpfin 334 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 198 es_ES
dc.relation.pasarela S\416329 es_ES
dc.description.references Aliyu, M., Hassan, G., Said, S. A., Siddiqui, M. U., Alawami, A. T., & Elamin, I. M. (2018). A review of solar-powered water pumping systems. Renewable and Sustainable Energy Reviews, 87, 61-76. doi:10.1016/j.rser.2018.02.010 es_ES
dc.description.references Almeida, R. H., Carrêlo, I. B., Lorenzo, E., Narvarte, L., Fernández-Ramos, J., Martínez-Moreno, F., & Carrasco, L. M. (2018). Development and Test of Solutions to Enlarge the Power of PV Irrigation and Application to a 140 kW PV-Diesel Representative Case. Energies, 11(12), 3538. doi:10.3390/en11123538 es_ES
dc.description.references Almeida, R. H., Ledesma, J. R., Carrêlo, I. B., Narvarte, L., Ferrara, G., & Antipodi, L. (2018). A new pump selection method for large-power PV irrigation systems at a variable frequency. Energy Conversion and Management, 174, 874-885. doi:10.1016/j.enconman.2018.08.071 es_ES
dc.description.references Alonso Abella, M., Lorenzo, E., & Chenlo, F. (2003). PV water pumping systems based on standard frequency converters. Progress in Photovoltaics: Research and Applications, 11(3), 179-191. doi:10.1002/pip.475 es_ES
dc.description.references Benghanem, M., Daffallah, K. O., & Almohammedi, A. (2018). Estimation of daily flow rate of photovoltaic water pumping systems using solar radiation data. Results in Physics, 8, 949-954. doi:10.1016/j.rinp.2018.01.022 es_ES
dc.description.references Benlarbi, K., Mokrani, L., & Nait-Said, M. S. (2004). A fuzzy global efficiency optimization of a photovoltaic water pumping system. Solar Energy, 77(2), 203-216. doi:10.1016/j.solener.2004.03.025 es_ES
dc.description.references Bione, J., Vilela, O. C., & Fraidenraich, N. (2004). Comparison of the performance of PV water pumping systems driven by fixed, tracking and V-trough generators. Solar Energy, 76(6), 703-711. doi:10.1016/j.solener.2004.01.003 es_ES
dc.description.references Bombas Ideal Catalogue. SKI Series. www.bombasideal.com/wp-content/uploads/2018/07/Catalogo-SUM-1078.compressed.pdf (accessed 29 July 2019). es_ES
dc.description.references Campana, P. E., Li, H., & Yan, J. (2013). Dynamic modelling of a PV pumping system with special consideration on water demand. Applied Energy, 112, 635-645. doi:10.1016/j.apenergy.2012.12.073 es_ES
dc.description.references Carrêlo, I. B., Almeida, R. H., Narvarte, L., Martinez-Moreno, F., & Carrasco, L. M. (2020). Comparative analysis of the economic feasibility of five large-power photovoltaic irrigation systems in the Mediterranean region. Renewable Energy, 145, 2671-2682. doi:10.1016/j.renene.2019.08.030 es_ES
dc.description.references Espericueta, A.D.C., Foster, R.E., Ross, M.P., Hanley, C., Gupta, V.P., Avilez, O.M., Rubio, A.R.P., 2004. Ten-Year Reliability Assessment of Photovoltaic Water Pumping Systems in Mexico, in Solar 2004; American Solar Energy Society: Portland, OR, USA. es_ES
dc.description.references Fedrizzi, M.C., Sauer, I.L., 2002. Bombeamento Solar Fotovoltaico, Histórico, Características e Projectos. In Encontro de Energia no Meio Rural; SciELO: Campinas, Brazil. es_ES
dc.description.references García-Tejero, I.F., Durán-Zuazo, V.H. (Eds.), 2018. Water scarcity and sustainable agriculture in semiarid environment. Tools, strategies and challenges for woody crops. 1st Ed. Academic Press. es_ES
dc.description.references Barrueto Guzmán, A., Barraza Vicencio, R., Ardila-Rey, J., Núñez Ahumada, E., González Araya, A., & Arancibia Moreno, G. (2018). A Cost-Effective Methodology for Sizing Solar PV Systems for Existing Irrigation Facilities in Chile. Energies, 11(7), 1853. doi:10.3390/en11071853 es_ES
dc.description.references Hamrouni, N., Jraidi, M., & Chérif, A. (2009). Theoretical and experimental analysis of the behaviour of a photovoltaic pumping system. Solar Energy, 83(8), 1335-1344. doi:10.1016/j.solener.2009.03.006 es_ES
dc.description.references IEC 62253:2011. Photovoltaic pumping systems – Design qualification and performance measurements. International Electrotechnical Commission, https://webstore.iec.ch/publication/6636 (accessed 29 July 2019). es_ES
dc.description.references Kaya, D., Yagmur, E. A., Yigit, K. S., Kilic, F. C., Eren, A. S., & Celik, C. (2008). Energy efficiency in pumps. Energy Conversion and Management, 49(6), 1662-1673. doi:10.1016/j.enconman.2007.11.010 es_ES
dc.description.references Koor, M., Vassiljev, A., & Koppel, T. (2016). Optimization of pump efficiencies with different pumps characteristics working in parallel mode. Advances in Engineering Software, 101, 69-76. doi:10.1016/j.advengsoft.2015.10.010 es_ES
dc.description.references López-Luque, R., Reca, J., & Martínez, J. (2015). Optimal design of a standalone direct pumping photovoltaic system for deficit irrigation of olive orchards. Applied Energy, 149, 13-23. doi:10.1016/j.apenergy.2015.03.107 es_ES
dc.description.references Matam, M., Barry, V. R., & Govind, A. R. (2018). Optimized Reconfigurable PV array based Photovoltaic water-pumping system. Solar Energy, 170, 1063-1073. doi:10.1016/j.solener.2018.05.046 es_ES
dc.description.references Meah, K., Fletcher, S., & Ula, S. (2008). Solar photovoltaic water pumping for remote locations. Renewable and Sustainable Energy Reviews, 12(2), 472-487. doi:10.1016/j.rser.2006.10.008 es_ES
dc.description.references Mérida García, A., Fernández García, I., Camacho Poyato, E., Montesinos Barrios, P., & Rodríguez Díaz, J. A. (2018). Coupling irrigation scheduling with solar energy production in a smart irrigation management system. Journal of Cleaner Production, 175, 670-682. doi:10.1016/j.jclepro.2017.12.093 es_ES
dc.description.references Arun Shankar, V. K., Umashankar, S., Paramasivam, S., & Hanigovszki, N. (2016). A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system. Applied Energy, 181, 495-513. doi:10.1016/j.apenergy.2016.08.070 es_ES
dc.description.references Shoeb, M., & Shafiullah, G. (2018). Renewable Energy Integrated Islanded Microgrid for Sustainable Irrigation—A Bangladesh Perspective. Energies, 11(5), 1283. doi:10.3390/en11051283 es_ES
dc.description.references Talbi, B., Krim, F., Rekioua, T., Mekhilef, S., Laib, A., & Belaout, A. (2018). A high-performance control scheme for photovoltaic pumping system under sudden irradiance and load changes. Solar Energy, 159, 353-368. doi:10.1016/j.solener.2017.11.009 es_ES
dc.description.references Tiwari, A. K., & Kalamkar, V. R. (2018). Effects of total head and solar radiation on the performance of solar water pumping system. Renewable Energy, 118, 919-927. doi:10.1016/j.renene.2017.11.004 es_ES
dc.description.references Todde, G., Murgia, L., Deligios, P. A., Hogan, R., Carrelo, I., Moreira, M., … Narvarte, L. (2019). Energy and environmental performances of hybrid photovoltaic irrigation systems in Mediterranean intensive and super-intensive olive orchards. Science of The Total Environment, 651, 2514-2523. doi:10.1016/j.scitotenv.2018.10.175 es_ES
dc.description.references Mohammed Wazed, S., Hughes, B. R., O’Connor, D., & Kaiser Calautit, J. (2018). A review of sustainable solar irrigation systems for Sub-Saharan Africa. Renewable and Sustainable Energy Reviews, 81, 1206-1225. doi:10.1016/j.rser.2017.08.039 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem