Mostrar el registro sencillo del ítem
dc.contributor.author | Gasque Albalate, Maria | es_ES |
dc.contributor.author | González Altozano, Pablo | es_ES |
dc.contributor.author | Gutiérrez-Colomer, Rosa Penélope | es_ES |
dc.contributor.author | García-Marí, Eugenio | es_ES |
dc.date.accessioned | 2021-05-25T03:32:08Z | |
dc.date.available | 2021-05-25T03:32:08Z | |
dc.date.issued | 2020-03-01 | es_ES |
dc.identifier.issn | 0038-092X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166737 | |
dc.description.abstract | [EN] In this work, a method for distributing the power generated in a photovoltaic pumping system equipped with two equal pumps, working in parallel is analysed. For this purpose, a system equipped with two pumping groups 0.75 kW each was investigated. Experimental tests at five different working frequencies (30 to 50 Hz), and at six pumping heads (18 to 48 m) were carried out. The main objective of this paper is to establish a strategy for the distribution of the generated power that maximises the flow rate from the set of two pumps. This distribution depends both on the available electric power and on the pumping head. The results show some differences between higher and lower pumping heads, but in both cases for lower power values, the strategy involves the operation of a single pump with the limitation that the power assigned to this pump cannot exceed the maximum value (P-max). However, if the available power exceeds a certain value, referred to as P-e, it must then be distributed at 50% between the two pumps. Thus, there is no power distribution ratio other than 0 and 50% that maximises the flow rate, except that required to limit the power assigned to one of the pumps to P-max. It was proven that the optimal distribution strategy for the available power depends on whether P-e > P-max (for higher pumping heads) or P-e < P-max (in case of lower heads). In practice, it is easy to determine which case applies using a simple pumping test. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Solar Energy | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Pumping system | es_ES |
dc.subject | Power optimisation | es_ES |
dc.subject | Multi-pump system | es_ES |
dc.subject | Parallel pumps | es_ES |
dc.subject.classification | INGENIERIA AGROFORESTAL | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Optimisation of the distribution of power from a photovoltaic generator between two pumps working in parallel | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.solener.2020.01.013 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Rural y Agroalimentaria - Departament d'Enginyeria Rural i Agroalimentària | es_ES |
dc.description.bibliographicCitation | Gasque Albalate, M.; González Altozano, P.; Gutiérrez-Colomer, RP.; García-Marí, E. (2020). Optimisation of the distribution of power from a photovoltaic generator between two pumps working in parallel. Solar Energy. 198:324-334. https://doi.org/10.1016/j.solener.2020.01.013 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.solener.2020.01.013 | es_ES |
dc.description.upvformatpinicio | 324 | es_ES |
dc.description.upvformatpfin | 334 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 198 | es_ES |
dc.relation.pasarela | S\416329 | es_ES |
dc.description.references | Aliyu, M., Hassan, G., Said, S. A., Siddiqui, M. U., Alawami, A. T., & Elamin, I. M. (2018). A review of solar-powered water pumping systems. Renewable and Sustainable Energy Reviews, 87, 61-76. doi:10.1016/j.rser.2018.02.010 | es_ES |
dc.description.references | Almeida, R. H., Carrêlo, I. B., Lorenzo, E., Narvarte, L., Fernández-Ramos, J., Martínez-Moreno, F., & Carrasco, L. M. (2018). Development and Test of Solutions to Enlarge the Power of PV Irrigation and Application to a 140 kW PV-Diesel Representative Case. Energies, 11(12), 3538. doi:10.3390/en11123538 | es_ES |
dc.description.references | Almeida, R. H., Ledesma, J. R., Carrêlo, I. B., Narvarte, L., Ferrara, G., & Antipodi, L. (2018). A new pump selection method for large-power PV irrigation systems at a variable frequency. Energy Conversion and Management, 174, 874-885. doi:10.1016/j.enconman.2018.08.071 | es_ES |
dc.description.references | Alonso Abella, M., Lorenzo, E., & Chenlo, F. (2003). PV water pumping systems based on standard frequency converters. Progress in Photovoltaics: Research and Applications, 11(3), 179-191. doi:10.1002/pip.475 | es_ES |
dc.description.references | Benghanem, M., Daffallah, K. O., & Almohammedi, A. (2018). Estimation of daily flow rate of photovoltaic water pumping systems using solar radiation data. Results in Physics, 8, 949-954. doi:10.1016/j.rinp.2018.01.022 | es_ES |
dc.description.references | Benlarbi, K., Mokrani, L., & Nait-Said, M. S. (2004). A fuzzy global efficiency optimization of a photovoltaic water pumping system. Solar Energy, 77(2), 203-216. doi:10.1016/j.solener.2004.03.025 | es_ES |
dc.description.references | Bione, J., Vilela, O. C., & Fraidenraich, N. (2004). Comparison of the performance of PV water pumping systems driven by fixed, tracking and V-trough generators. Solar Energy, 76(6), 703-711. doi:10.1016/j.solener.2004.01.003 | es_ES |
dc.description.references | Bombas Ideal Catalogue. SKI Series. www.bombasideal.com/wp-content/uploads/2018/07/Catalogo-SUM-1078.compressed.pdf (accessed 29 July 2019). | es_ES |
dc.description.references | Campana, P. E., Li, H., & Yan, J. (2013). Dynamic modelling of a PV pumping system with special consideration on water demand. Applied Energy, 112, 635-645. doi:10.1016/j.apenergy.2012.12.073 | es_ES |
dc.description.references | Carrêlo, I. B., Almeida, R. H., Narvarte, L., Martinez-Moreno, F., & Carrasco, L. M. (2020). Comparative analysis of the economic feasibility of five large-power photovoltaic irrigation systems in the Mediterranean region. Renewable Energy, 145, 2671-2682. doi:10.1016/j.renene.2019.08.030 | es_ES |
dc.description.references | Espericueta, A.D.C., Foster, R.E., Ross, M.P., Hanley, C., Gupta, V.P., Avilez, O.M., Rubio, A.R.P., 2004. Ten-Year Reliability Assessment of Photovoltaic Water Pumping Systems in Mexico, in Solar 2004; American Solar Energy Society: Portland, OR, USA. | es_ES |
dc.description.references | Fedrizzi, M.C., Sauer, I.L., 2002. Bombeamento Solar Fotovoltaico, Histórico, Características e Projectos. In Encontro de Energia no Meio Rural; SciELO: Campinas, Brazil. | es_ES |
dc.description.references | García-Tejero, I.F., Durán-Zuazo, V.H. (Eds.), 2018. Water scarcity and sustainable agriculture in semiarid environment. Tools, strategies and challenges for woody crops. 1st Ed. Academic Press. | es_ES |
dc.description.references | Barrueto Guzmán, A., Barraza Vicencio, R., Ardila-Rey, J., Núñez Ahumada, E., González Araya, A., & Arancibia Moreno, G. (2018). A Cost-Effective Methodology for Sizing Solar PV Systems for Existing Irrigation Facilities in Chile. Energies, 11(7), 1853. doi:10.3390/en11071853 | es_ES |
dc.description.references | Hamrouni, N., Jraidi, M., & Chérif, A. (2009). Theoretical and experimental analysis of the behaviour of a photovoltaic pumping system. Solar Energy, 83(8), 1335-1344. doi:10.1016/j.solener.2009.03.006 | es_ES |
dc.description.references | IEC 62253:2011. Photovoltaic pumping systems – Design qualification and performance measurements. International Electrotechnical Commission, https://webstore.iec.ch/publication/6636 (accessed 29 July 2019). | es_ES |
dc.description.references | Kaya, D., Yagmur, E. A., Yigit, K. S., Kilic, F. C., Eren, A. S., & Celik, C. (2008). Energy efficiency in pumps. Energy Conversion and Management, 49(6), 1662-1673. doi:10.1016/j.enconman.2007.11.010 | es_ES |
dc.description.references | Koor, M., Vassiljev, A., & Koppel, T. (2016). Optimization of pump efficiencies with different pumps characteristics working in parallel mode. Advances in Engineering Software, 101, 69-76. doi:10.1016/j.advengsoft.2015.10.010 | es_ES |
dc.description.references | López-Luque, R., Reca, J., & Martínez, J. (2015). Optimal design of a standalone direct pumping photovoltaic system for deficit irrigation of olive orchards. Applied Energy, 149, 13-23. doi:10.1016/j.apenergy.2015.03.107 | es_ES |
dc.description.references | Matam, M., Barry, V. R., & Govind, A. R. (2018). Optimized Reconfigurable PV array based Photovoltaic water-pumping system. Solar Energy, 170, 1063-1073. doi:10.1016/j.solener.2018.05.046 | es_ES |
dc.description.references | Meah, K., Fletcher, S., & Ula, S. (2008). Solar photovoltaic water pumping for remote locations. Renewable and Sustainable Energy Reviews, 12(2), 472-487. doi:10.1016/j.rser.2006.10.008 | es_ES |
dc.description.references | Mérida García, A., Fernández García, I., Camacho Poyato, E., Montesinos Barrios, P., & Rodríguez Díaz, J. A. (2018). Coupling irrigation scheduling with solar energy production in a smart irrigation management system. Journal of Cleaner Production, 175, 670-682. doi:10.1016/j.jclepro.2017.12.093 | es_ES |
dc.description.references | Arun Shankar, V. K., Umashankar, S., Paramasivam, S., & Hanigovszki, N. (2016). A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system. Applied Energy, 181, 495-513. doi:10.1016/j.apenergy.2016.08.070 | es_ES |
dc.description.references | Shoeb, M., & Shafiullah, G. (2018). Renewable Energy Integrated Islanded Microgrid for Sustainable Irrigation—A Bangladesh Perspective. Energies, 11(5), 1283. doi:10.3390/en11051283 | es_ES |
dc.description.references | Talbi, B., Krim, F., Rekioua, T., Mekhilef, S., Laib, A., & Belaout, A. (2018). A high-performance control scheme for photovoltaic pumping system under sudden irradiance and load changes. Solar Energy, 159, 353-368. doi:10.1016/j.solener.2017.11.009 | es_ES |
dc.description.references | Tiwari, A. K., & Kalamkar, V. R. (2018). Effects of total head and solar radiation on the performance of solar water pumping system. Renewable Energy, 118, 919-927. doi:10.1016/j.renene.2017.11.004 | es_ES |
dc.description.references | Todde, G., Murgia, L., Deligios, P. A., Hogan, R., Carrelo, I., Moreira, M., … Narvarte, L. (2019). Energy and environmental performances of hybrid photovoltaic irrigation systems in Mediterranean intensive and super-intensive olive orchards. Science of The Total Environment, 651, 2514-2523. doi:10.1016/j.scitotenv.2018.10.175 | es_ES |
dc.description.references | Mohammed Wazed, S., Hughes, B. R., O’Connor, D., & Kaiser Calautit, J. (2018). A review of sustainable solar irrigation systems for Sub-Saharan Africa. Renewable and Sustainable Energy Reviews, 81, 1206-1225. doi:10.1016/j.rser.2017.08.039 | es_ES |