- -

Transient Phenomena Generated in Emptying Operations in Large-Scale Hydraulic Pipelines

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Transient Phenomena Generated in Emptying Operations in Large-Scale Hydraulic Pipelines

Mostrar el registro completo del ítem

Romero, G.; Fuertes-Miquel, VS.; Coronado-Hernández, ÓE.; Ponz-Carcelén, R.; Biel Sanchis, F. (2020). Transient Phenomena Generated in Emptying Operations in Large-Scale Hydraulic Pipelines. Water. 12(8):1-11. https://doi.org/10.3390/w12082313

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166743

Ficheros en el ítem

Metadatos del ítem

Título: Transient Phenomena Generated in Emptying Operations in Large-Scale Hydraulic Pipelines
Autor: Romero, Guillermo Fuertes-Miquel, Vicente S. Coronado-Hernández, Óscar E. Ponz-Carcelén, Román Biel Sanchis, Francisco
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
[EN] Air pockets generated during emptying operations in pressurized hydraulic systems cause significant pressure drops inside pipes. To avoid these sudden pressure changes, one of the most widely used methods involves the ...[+]
Palabras clave: Hydraulic transients , Pipelines emptying , Trapped air , Air valves , Mathematical model , Large-scale installations
Derechos de uso: Reconocimiento (by)
Fuente:
Water. (issn: 2073-4441 )
DOI: 10.3390/w12082313
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/w12082313
Tipo: Artículo

References

Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vučković, S., Hou, Q., … van’t Westende, J. M. C. (2012). Emptying of Large-Scale Pipeline by Pressurized Air. Journal of Hydraulic Engineering, 138(12), 1090-1100. doi:10.1061/(asce)hy.1943-7900.0000631

Fuertes-Miquel, V. S., Coronado-Hernández, O. E., Mora-Meliá, D., & Iglesias-Rey, P. L. (2019). Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review. Urban Water Journal, 16(4), 299-311. doi:10.1080/1573062x.2019.1669188

Vasconcelos, J. G., & Wright, S. J. (2008). Rapid Flow Startup in Filled Horizontal Pipelines. Journal of Hydraulic Engineering, 134(7), 984-992. doi:10.1061/(asce)0733-9429(2008)134:7(984) [+]
Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vučković, S., Hou, Q., … van’t Westende, J. M. C. (2012). Emptying of Large-Scale Pipeline by Pressurized Air. Journal of Hydraulic Engineering, 138(12), 1090-1100. doi:10.1061/(asce)hy.1943-7900.0000631

Fuertes-Miquel, V. S., Coronado-Hernández, O. E., Mora-Meliá, D., & Iglesias-Rey, P. L. (2019). Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review. Urban Water Journal, 16(4), 299-311. doi:10.1080/1573062x.2019.1669188

Vasconcelos, J. G., & Wright, S. J. (2008). Rapid Flow Startup in Filled Horizontal Pipelines. Journal of Hydraulic Engineering, 134(7), 984-992. doi:10.1061/(asce)0733-9429(2008)134:7(984)

Bashiri-Atrabi, H., & Hosoda, T. (2015). The motion of entrapped air cavities in inclined ducts. Journal of Hydraulic Research, 53(6), 814-819. doi:10.1080/00221686.2015.1060272

Zhou, L., Liu, D., Karney, B., & Wang, P. (2013). Phenomenon of White Mist in Pipelines Rapidly Filling with Water with Entrapped Air Pockets. Journal of Hydraulic Engineering, 139(10), 1041-1051. doi:10.1061/(asce)hy.1943-7900.0000765

Ramezani, L., Karney, B., & Malekpour, A. (2015). The Challenge of Air Valves: A Selective Critical Literature Review. Journal of Water Resources Planning and Management, 141(10), 04015017. doi:10.1061/(asce)wr.1943-5452.0000530

Ramezani, L., Karney, B., & Malekpour, A. (2016). Encouraging Effective Air Management in Water Pipelines: A Critical Review. Journal of Water Resources Planning and Management, 142(12), 04016055. doi:10.1061/(asce)wr.1943-5452.0000695

Coronado-Hernández, O., Fuertes-Miquel, V., Besharat, M., & Ramos, H. (2017). Experimental and Numerical Analysis of a Water Emptying Pipeline Using Different Air Valves. Water, 9(2), 98. doi:10.3390/w9020098

Liou, C. P., & Hunt, W. A. (1996). Filling of Pipelines with Undulating Elevation Profiles. Journal of Hydraulic Engineering, 122(10), 534-539. doi:10.1061/(asce)0733-9429(1996)122:10(534)

Zhou, L., & Liu, D. (2013). Experimental investigation of entrapped air pocket in a partially full water pipe. Journal of Hydraulic Research, 51(4), 469-474. doi:10.1080/00221686.2013.785985

Fuertes-Miquel, V. S., López-Jiménez, P. A., Martínez-Solano, F. J., & López-Patiño, G. (2016). Numerical modelling of pipelines with air pockets and air valves. Canadian Journal of Civil Engineering, 43(12), 1052-1061. doi:10.1139/cjce-2016-0209

Martins, S. C., Ramos, H. M., & Almeida, A. B. (2015). Conceptual analogy for modelling entrapped air action in hydraulic systems. Journal of Hydraulic Research, 53(5), 678-686. doi:10.1080/00221686.2015.1077353

Balacco, G., Apollonio, C., & Piccinni, A. F. (2015). Experimental analysis of air valve behaviour during hydraulic transients. Journal of Applied Water Engineering and Research, 3(1), 3-11. doi:10.1080/23249676.2015.1032374

Abreu, J., Cabrera, E., Izquierdo, J., & García-Serra, J. (1999). Flow Modeling in Pressurized Systems Revisited. Journal of Hydraulic Engineering, 125(11), 1154-1169. doi:10.1061/(asce)0733-9429(1999)125:11(1154)

De Marchis, M., Freni, G., & Milici, B. (2018). Experimental analysis of pressure-discharge relationship in a private water supply tank. Journal of Hydroinformatics, 20(3), 608-621. doi:10.2166/hydro.2018.135

Alexander, J., Lee, P. J., Davidson, M., Duan, H.-F., Li, Z., Murch, R., … Brunone, B. (2019). Experimental Validation of Existing Numerical Models for the Interaction of Fluid Transients With In-Line Air Pockets. Journal of Fluids Engineering, 141(12). doi:10.1115/1.4043776

Besharat, M., Tarinejad, R., Aalami, M. T., & Ramos, H. M. (2016). Study of a Compressed Air Vessel for Controlling the Pressure Surge in Water Networks: CFD and Experimental Analysis. Water Resources Management, 30(8), 2687-2702. doi:10.1007/s11269-016-1310-1

Covas, D., Stoianov, I., Ramos, H., Graham, N., Maksimović, Č., & Butler, D. (2004). Water hammer in pressurized polyethylene pipes: conceptual model and experimental analysis. Urban Water Journal, 1(2), 177-197. doi:10.1080/15730620412331289977

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem