- -

Quick Calculation of Magnetic Flux Density in Electrical Facilities

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Quick Calculation of Magnetic Flux Density in Electrical Facilities

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Roldán-Blay, Carlos es_ES
dc.contributor.author Roldán-Porta, Carlos es_ES
dc.date.accessioned 2021-05-25T03:32:29Z
dc.date.available 2021-05-25T03:32:29Z
dc.date.issued 2020-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166745
dc.description.abstract [EN] The World Health Organization (WHO) warns that the presence of magnetic fields due to the circulation of industrial frequency electrical currents may have repercussions on the health of living beings. Hence, it is crucially important that we are able to quantify these fields under the normal operating conditions of the facilities, both in their premises and in their surroundings, in order to take the appropriate corrective measures and assure the safety conditions imposed, in force, by regulations. For this purpose, CRMag® software has been developed. Using the simplified Maxwell equations for low frequencies, CRMag® calculates and represents the magnetic flux density (MFD) that electrical currents produce in the environment. Users can easily model electrical facilities through a friendly and simple data entry. MFDs calculated by CRMag® have been validated in real facilities and laboratory tests. With this software, exposure levels can be studied in any hypothetical scenario, even in inaccessible zones. This allows designers to guarantee that legal limits (occupational, general population, or precautionary levels related to epidemiological studies) are fulfilled. A real case study has been described to show how the reconfiguration of conductors in a distribution transformer substation (DTS) allows significant reductions in MFD in some points outside the facility. es_ES
dc.description.sponsorship This work has been possible thanks to the support of the Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Magnetic field es_ES
dc.subject Magnetic flux density es_ES
dc.subject Electrical facility es_ES
dc.subject Magnetometer es_ES
dc.subject Non-ionizing radiation es_ES
dc.subject Distribution transformer substation es_ES
dc.subject CRMag es_ES
dc.subject Software es_ES
dc.subject Exposure limits es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title Quick Calculation of Magnetic Flux Density in Electrical Facilities es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app10030891 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.description.bibliographicCitation Roldán-Blay, C.; Roldán-Porta, C. (2020). Quick Calculation of Magnetic Flux Density in Electrical Facilities. Applied Sciences. 10(3):1-20. https://doi.org/10.3390/app10030891 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app10030891 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\402180 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Feychting, M., & Alhbom, M. (1993). Magnetic Fields and Cancer in Children Residing Near Swedish High-voltage Power Lines. American Journal of Epidemiology, 138(7), 467-481. doi:10.1093/oxfordjournals.aje.a116881 es_ES
dc.description.references WERTHEIMER, N., & LEEPER, E. (1979). ELECTRICAL WIRING CONFIGURATIONS AND CHILDHOOD CANCER. American Journal of Epidemiology, 109(3), 273-284. doi:10.1093/oxfordjournals.aje.a112681 es_ES
dc.description.references Green, L. M., Miller, A. B., Villeneuve, P. J., Agnew, D. A., Greenberg, M. L., Li, J., & Donnelly, K. E. (1999). A case-control study of childhood leukemia in Southern Ontario, Canada, and exposure to magnetic fields in residences. International Journal of Cancer, 82(2), 161-170. doi:10.1002/(sici)1097-0215(19990719)82:2<161::aid-ijc2>3.0.co;2-x es_ES
dc.description.references Green, L. M., Miller, A. B., Agnew, D. A., Greenberg, M. L., Li, J., Villeneuve, P. J., & Tibshirani, R. (1999). Cancer Causes and Control, 10(3), 233-243. doi:10.1023/a:1008919408855 es_ES
dc.description.references McBride, M. L., Gallagher, R. P., Theriault, G., Armstrong, B. G., Tamaro, S., Spinelli, J. J., … Choi, W. (1999). Power-Frequency Electric and Magnetic Fields and Risk of Childhood Leukemia in Canada. American Journal of Epidemiology, 149(9), 831-842. doi:10.1093/oxfordjournals.aje.a009899 es_ES
dc.description.references Tynes, T., & Haldorsen, T. (1997). Electromagnetic Fields and Cancer in Children Residing Near Norwegian High-Voltage Power Lines. American Journal of Epidemiology, 145(3), 219-226. doi:10.1093/oxfordjournals.aje.a009094 es_ES
dc.description.references Ahlbom, A., Day, N., Feychting, M., Roman, E., Skinner, J., Dockerty, J., … Verkasalo, P. K. (2000). A pooled analysis of magnetic fields and childhood leukaemia. British Journal of Cancer, 83(5), 692-698. doi:10.1054/bjoc.2000.1376 es_ES
dc.description.references GUIDELINES FOR LIMITING EXPOSURE TO TIME-VARYING ELECTRIC AND MAGNETIC FIELDS (1 Hz TO 100 kHz). (2010). Health Physics, 99(6), 818-836. doi:10.1097/hp.0b013e3181f06c86 es_ES
dc.description.references Exposure to Extremely Low Frequency Fieldshttps://www.who.int/peh-emf/publications/facts/fs322/en/ es_ES
dc.description.references Boletín Oficial del Estadohttps://www.boe.es/buscar/pdf/2001/BOE-A-2001-18256-consolidado.pdf es_ES
dc.description.references IEEE Standard for Safety Levels With Respect to Human Exposure to Electromagnetic Fields, 0-3 kHz. (s. f.). doi:10.1109/ieeestd.2002.94143 es_ES
dc.description.references International Agency for Research on Cancer Classifies Radiofrequency Electromagnetic Fields as Possibly Carcinogenic to Humans, World Health Organization, Lyon, 2011https://www.iarc.fr/wp-content/uploads/2018/07/pr208_E.pdf es_ES
dc.description.references Kavet, R., Dovan, T., & Reilly, J. P. (2012). The relationship between anatomically correct electric and magnetic field dosimetry and publishedelectric and magnetic field exposure limits. Radiation Protection Dosimetry, 152(4), 279-295. doi:10.1093/rpd/ncs064 es_ES
dc.description.references Boletín Oficial del Estadohttps://www.boe.es/boe/dias/2014/06/09/pdfs/BOE-A-2014-6084.pdf es_ES
dc.description.references Kheifets, L., Afifi, A., Monroe, J., & Swanson, J. (2010). Exploring exposure–response for magnetic fields and childhood leukemia. Journal of Exposure Science & Environmental Epidemiology, 21(6), 625-633. doi:10.1038/jes.2010.38 es_ES
dc.description.references Zhao, L., Liu, X., Wang, C., Yan, K., Lin, X., Li, S., … Liu, X. (2014). Magnetic fields exposure and childhood leukemia risk: A meta-analysis based on 11,699 cases and 13,194 controls. Leukemia Research, 38(3), 269-274. doi:10.1016/j.leukres.2013.12.008 es_ES
dc.description.references Calvente, I., Fernandez, M. F., Villalba, J., Olea, N., & Nuñez, M. I. (2010). Exposure to electromagnetic fields (non-ionizing radiation) and its relationship with childhood leukemia: A systematic review. Science of The Total Environment, 408(16), 3062-3069. doi:10.1016/j.scitotenv.2010.03.039 es_ES
dc.description.references Bunch, K. J., Keegan, T. J., Swanson, J., Vincent, T. J., & Murphy, M. F. G. (2014). Residential distance at birth from overhead high-voltage powerlines: childhood cancer risk in Britain 1962–2008. British Journal of Cancer, 110(5), 1402-1408. doi:10.1038/bjc.2014.15 es_ES
dc.description.references Sermage-Faure, C., Demoury, C., Rudant, J., Goujon-Bellec, S., Guyot-Goubin, A., Deschamps, F., … Clavel, J. (2013). Childhood leukaemia close to high-voltage power lines – the Geocap study, 2002–2007. British Journal of Cancer, 108(9), 1899-1906. doi:10.1038/bjc.2013.128 es_ES
dc.description.references Bunch, K. J., Swanson, J., Vincent, T. J., & Murphy, M. F. G. (2015). Magnetic fields and childhood cancer: an epidemiological investigation of the effects of high-voltage underground cables. Journal of Radiological Protection, 35(3), 695-705. doi:10.1088/0952-4746/35/3/695 es_ES
dc.description.references Frei, P., Poulsen, A. H., Mezei, G., Pedersen, C., Cronberg Salem, L., Johansen, C., … Schuz, J. (2013). Residential Distance to High-voltage Power Lines and Risk of Neurodegenerative Diseases: a Danish Population-based Case-Control Study. American Journal of Epidemiology, 177(9), 970-978. doi:10.1093/aje/kws334 es_ES
dc.description.references Crespi, C. M., Swanson, J., Vergara, X. P., & Kheifets, L. (2019). Childhood leukemia risk in the California Power Line Study: Magnetic fields versus distance from power lines. Environmental Research, 171, 530-535. doi:10.1016/j.envres.2019.01.022 es_ES
dc.description.references Bavastro, D., Canova, A., Freschi, F., Giaccone, L., & Manca, M. (2014). Magnetic field mitigation at power frequency: Design principles and case studies. 2014 IEEE Industry Application Society Annual Meeting. doi:10.1109/ias.2014.6978470 es_ES
dc.description.references Paraskevopoulos, A. A. P., Bourkas, P. D., & Karagiannopoulos, C. G. (2009). Magnetic induction measurements in high voltage centers of 150/20kV. Measurement, 42(8), 1188-1194. doi:10.1016/j.measurement.2009.03.007 es_ES
dc.description.references Nicolaou, C. P., Papadakis, A. P., Razis, P. A., Kyriacou, G. A., & Sahalos, J. N. (2012). Experimental measurement, analysis and prediction of electric and magnetic fields in open type air substations. Electric Power Systems Research, 90, 42-54. doi:10.1016/j.epsr.2012.03.014 es_ES
dc.description.references Nicolaou, C. P., Papadakis, A. P., Razis, P. A., Kyriacou, G. A., & Sahalos, J. N. (2011). Simplistic numerical methodology for magnetic field prediction in open air type substations. Electric Power Systems Research, 81(12), 2120-2126. doi:10.1016/j.epsr.2011.08.003 es_ES
dc.description.references Navarro-Camba, E., Segura-García, J., & Gomez-Perretta, C. (2018). Exposure to 50 Hz Magnetic Fields in Homes and Areas Surrounding Urban Transformer Stations in Silla (Spain): Environmental Impact Assessment. Sustainability, 10(8), 2641. doi:10.3390/su10082641 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES
dc.subject.ods 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem