- -

Polyvinylidene Fluoride-Graphene Oxide Membranes for Dye Removal under Visible Light Irradiation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Polyvinylidene Fluoride-Graphene Oxide Membranes for Dye Removal under Visible Light Irradiation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alyarnezhad, Sabri es_ES
dc.contributor.author Marino, Tiziana es_ES
dc.contributor.author Parsa, Jalal Basiri es_ES
dc.contributor.author Galiano, Francesco es_ES
dc.contributor.author Ursino, Claudia es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.contributor.author Puche, Marta es_ES
dc.contributor.author Figoli, Alberto es_ES
dc.date.accessioned 2021-05-25T03:32:35Z
dc.date.available 2021-05-25T03:32:35Z
dc.date.issued 2020-07-07 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166747
dc.description.abstract [EN] In this study, polyvinylidene fluoride (PVDF)-graphene oxide (GO) membranes were obtained by employing triethyl phosphate (TEP) as a solvent. GO nanosheets were prepared and characterized in terms of scanning and transmission electron microscopy (SEM and TEM, respectively), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), chemical analysis and inductively coupled plasma mass spectroscopy (ICP). Two different phase inversion techniques, Non-Solvent Induced Phase Separation (NIPS) and Vapour-Induced Phase Separation (VIPS)/NIPS, were applied to study the effect of fabrication procedure on the membrane structure and properties. Membranes were characterized by SEM, AFM, pore size, porosity, contact angle and mechanical tests, and finally tested for photocatalytic methylene blue (MB+) degradation under visible light irradiation. The effect of different pH values of dye aqueous solutions on the photocatalytic efficiency was investigated. Finally, the influence of NaCl salt on the MB+ photodegradation process was also evaluated. es_ES
dc.description.sponsorship The authors acknowledge the financial support from Iran Science Ministry. The authors also sincerely thank the Institute on Membrane Technology, National Research Council of Italy (ITM-CNR) for kindly collaborate. es_ES
dc.language Inglés es_ES
dc.publisher Walter de Gruyter GmbH es_ES
dc.relation.ispartof E-Polymers es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject PVDF-GO membranes es_ES
dc.subject Photocatalytic membranes es_ES
dc.subject Triethyl phosphate es_ES
dc.subject GO nanosheets es_ES
dc.subject Dye removal es_ES
dc.subject Photocatalysis es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Polyvinylidene Fluoride-Graphene Oxide Membranes for Dye Removal under Visible Light Irradiation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/polym12071509 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Alyarnezhad, S.; Marino, T.; Parsa, JB.; Galiano, F.; Ursino, C.; García Gómez, H.; Puche, M.... (2020). Polyvinylidene Fluoride-Graphene Oxide Membranes for Dye Removal under Visible Light Irradiation. E-Polymers. 12(7):1-19. https://doi.org/10.3390/polym12071509 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/polym12071509 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 7 es_ES
dc.identifier.eissn 1618-7229 es_ES
dc.identifier.pmid 32645993 es_ES
dc.identifier.pmcid PMC7407290 es_ES
dc.relation.pasarela S\433474 es_ES
dc.contributor.funder Ministry of Science, Research and Technology of Iran es_ES
dc.description.references Figoli, A., Ursino, C., Galiano, F., Di Nicolò, E., Campanelli, P., Carnevale, M. C., & Criscuoli, A. (2017). Innovative hydrophobic coating of perfluoropolyether (PFPE) on commercial hydrophilic membranes for DCMD application. Journal of Membrane Science, 522, 192-201. doi:10.1016/j.memsci.2016.08.066 es_ES
dc.description.references Dao, V.-D., Vu, N. H., & Choi, H.-S. (2020). All day Limnobium laevigatum inspired nanogenerator self-driven via water evaporation. Journal of Power Sources, 448, 227388. doi:10.1016/j.jpowsour.2019.227388 es_ES
dc.description.references Dao, V.-D., Vu, N. H., & Yun, S. (2020). Recent advances and challenges for solar-driven water evaporation system toward applications. Nano Energy, 68, 104324. doi:10.1016/j.nanoen.2019.104324 es_ES
dc.description.references Dao, V.-D., & Choi, H.-S. (2018). Carbon-Based Sunlight Absorbers in Solar-Driven Steam Generation Devices. Global Challenges, 2(2), 1700094. doi:10.1002/gch2.201700094 es_ES
dc.description.references Pastrana-Martínez, L. M., Morales-Torres, S., Figueiredo, J. L., Faria, J. L., & Silva, A. M. T. (2015). Graphene oxide based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water. Water Research, 77, 179-190. doi:10.1016/j.watres.2015.03.014 es_ES
dc.description.references Zhang, X., Wang, D. K., & Diniz da Costa, J. C. (2014). Recent progresses on fabrication of photocatalytic membranes for water treatment. Catalysis Today, 230, 47-54. doi:10.1016/j.cattod.2013.11.019 es_ES
dc.description.references Athanasekou, C. P., Moustakas, N. G., Morales-Torres, S., Pastrana-Martínez, L. M., Figueiredo, J. L., Faria, J. L., … Falaras, P. (2015). Ceramic photocatalytic membranes for water filtration under UV and visible light. Applied Catalysis B: Environmental, 178, 12-19. doi:10.1016/j.apcatb.2014.11.021 es_ES
dc.description.references Athanasekou, C. P., Romanos, G. E., Katsaros, F. K., Kordatos, K., Likodimos, V., & Falaras, P. (2012). Very efficient composite titania membranes in hybrid ultrafiltration/photocatalysis water treatment processes. Journal of Membrane Science, 392-393, 192-203. doi:10.1016/j.memsci.2011.12.028 es_ES
dc.description.references Romanos, G. E., Athanasekou, C. P., Katsaros, F. K., Kanellopoulos, N. K., Dionysiou, D. D., Likodimos, V., & Falaras, P. (2012). Double-side active TiO2-modified nanofiltration membranes in continuous flow photocatalytic reactors for effective water purification. Journal of Hazardous Materials, 211-212, 304-316. doi:10.1016/j.jhazmat.2011.09.081 es_ES
dc.description.references Zhang, W., Dong, F., Xiong, T., & Zhang, Q. (2014). Synthesis of BiOBr–graphene and BiOBr–graphene oxide nanocomposites with enhanced visible light photocatalytic performance. Ceramics International, 40(7), 9003-9008. doi:10.1016/j.ceramint.2014.01.112 es_ES
dc.description.references Dadvar, E., Kalantary, R. R., Ahmad Panahi, H., & Peyravi, M. (2017). Efficiency of Polymeric Membrane Graphene Oxide-TiO2for Removal of Azo Dye. Journal of Chemistry, 2017, 1-13. doi:10.1155/2017/6217987 es_ES
dc.description.references Simone, S., Galiano, F., Faccini, M., Boerrigter, M., Chaumette, C., Drioli, E., & Figoli, A. (2017). Preparation and Characterization of Polymeric-Hybrid PES/TiO2 Hollow Fiber Membranes for Potential Applications in Water Treatment. Fibers, 5(2), 14. doi:10.3390/fib5020014 es_ES
dc.description.references Liu, G., Han, K., Ye, H., Zhu, C., Gao, Y., Liu, Y., & Zhou, Y. (2017). Graphene oxide/triethanolamine modified titanate nanowires as photocatalytic membrane for water treatment. Chemical Engineering Journal, 320, 74-80. doi:10.1016/j.cej.2017.03.024 es_ES
dc.description.references Djafer, L., Ayral, A., & Ouagued, A. (2010). Robust synthesis and performance of a titania-based ultrafiltration membrane with photocatalytic properties. Separation and Purification Technology, 75(2), 198-203. doi:10.1016/j.seppur.2010.08.001 es_ES
dc.description.references Jung, J.-T., Lee, W.-H., & Kim, J.-O. (2016). Photodegradation and permeability of conventional photocatalytic reactor and two different submerged membrane photocatalytic reactors for the removal of humic acid in water. Desalination and Water Treatment, 57(55), 26765-26772. doi:10.1080/19443994.2016.1189700 es_ES
dc.description.references Xu, Z., Wu, T., Shi, J., Teng, K., Wang, W., Ma, M., … Fan, J. (2016). Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment. Journal of Membrane Science, 520, 281-293. doi:10.1016/j.memsci.2016.07.060 es_ES
dc.description.references Gao, Y., Hu, M., & Mi, B. (2014). Membrane surface modification with TiO2–graphene oxide for enhanced photocatalytic performance. Journal of Membrane Science, 455, 349-356. doi:10.1016/j.memsci.2014.01.011 es_ES
dc.description.references Zhao, H., Chen, S., Quan, X., Yu, H., & Zhao, H. (2016). Integration of microfiltration and visible-light-driven photocatalysis on g-C 3 N 4 nanosheet/reduced graphene oxide membrane for enhanced water treatment. Applied Catalysis B: Environmental, 194, 134-140. doi:10.1016/j.apcatb.2016.04.042 es_ES
dc.description.references Cruz-Ortiz, B. R., Hamilton, J. W. J., Pablos, C., Díaz-Jiménez, L., Cortés-Hernández, D. A., Sharma, P. K., … Byrne, J. A. (2017). Mechanism of photocatalytic disinfection using titania-graphene composites under UV and visible irradiation. Chemical Engineering Journal, 316, 179-186. doi:10.1016/j.cej.2017.01.094 es_ES
dc.description.references Galiano, F., Song, X., Marino, T., Boerrigter, M., Saoncella, O., Simone, S., … Figoli, A. (2018). Novel Photocatalytic PVDF/Nano-TiO2 Hollow Fibers for Environmental Remediation. Polymers, 10(10), 1134. doi:10.3390/polym10101134 es_ES
dc.description.references Szymański, K., Morawski, A. W., & Mozia, S. (2016). Humic acids removal in a photocatalytic membrane reactor with a ceramic UF membrane. Chemical Engineering Journal, 305, 19-27. doi:10.1016/j.cej.2015.10.024 es_ES
dc.description.references Marino, T., Blefari, S., Di Nicolò, E., & Figoli, A. (2017). A more sustainable membrane preparation using triethyl phosphate as solvent. Green Processing and Synthesis, 6(3). doi:10.1515/gps-2016-0165 es_ES
dc.description.references Benhabiles, O., Galiano, F., Marino, T., Mahmoudi, H., Lounici, H., & Figoli, A. (2019). Preparation and Characterization of TiO2-PVDF/PMMA Blend Membranes Using an Alternative Non-Toxic Solvent for UF/MF and Photocatalytic Application. Molecules, 24(4), 724. doi:10.3390/molecules24040724 es_ES
dc.description.references Marino, T., Russo, F., & Figoli, A. (2018). The Formation of Polyvinylidene Fluoride Membranes with Tailored Properties via Vapour/Non-Solvent Induced Phase Separation. Membranes, 8(3), 71. doi:10.3390/membranes8030071 es_ES
dc.description.references Liu, Z., Miao, Y.-E., Liu, M., Ding, Q., Tjiu, W. W., Cui, X., & Liu, T. (2014). Flexible polyaniline-coated TiO2/SiO2 nanofiber membranes with enhanced visible-light photocatalytic degradation performance. Journal of Colloid and Interface Science, 424, 49-55. doi:10.1016/j.jcis.2014.03.009 es_ES
dc.description.references Athanasekou, C. P., Morales-Torres, S., Likodimos, V., Romanos, G. E., Pastrana-Martinez, L. M., Falaras, P., … Silva, A. M. T. (2014). Prototype composite membranes of partially reduced graphene oxide/TiO2 for photocatalytic ultrafiltration water treatment under visible light. Applied Catalysis B: Environmental, 158-159, 361-372. doi:10.1016/j.apcatb.2014.04.012 es_ES
dc.description.references Rao, G., Zhang, Q., Zhao, H., Chen, J., & Li, Y. (2016). Novel titanium dioxide/iron (III) oxide/graphene oxide photocatalytic membrane for enhanced humic acid removal from water. Chemical Engineering Journal, 302, 633-640. doi:10.1016/j.cej.2016.05.095 es_ES
dc.description.references Chen, W., Ye, T., Xu, H., Chen, T., Geng, N., & Gao, X. (2017). An ultrafiltration membrane with enhanced photocatalytic performance from grafted N–TiO2/graphene oxide. RSC Advances, 7(16), 9880-9887. doi:10.1039/c6ra27666k es_ES
dc.description.references Shao, F., Xu, C., Ji, W., Dong, H., Sun, Q., Yu, L., & Dong, L. (2017). Layer-by-layer self-assembly TiO 2 and graphene oxide on polyamide reverse osmosis membranes with improved membrane durability. Desalination, 423, 21-29. doi:10.1016/j.desal.2017.09.007 es_ES
dc.description.references Chen, R., & Liu, H. (2011). Preparation of Cr-doped TiO2/SiO2 Photocatalysts and their Photocatalytic Properties. Journal of the Chinese Chemical Society, 58(7), 947-954. doi:10.1002/jccs.201190149 es_ES
dc.description.references Morris, R. E., Krikanova, E., & Shadman, F. (2004). Photocatalytic membrane for removal of organic contaminants during ultra-purification of water. Clean Technologies and Environmental Policy, 6(2), 96-104. doi:10.1007/s10098-003-0198-7 es_ES
dc.description.references Lopez, L. C., Buonomenna, M. G., Fontananova, E., Iacoviello, G., Drioli, E., d’ Agostino, R., & Favia, P. (2006). A New Generation of Catalytic Poly(vinylidene fluoride) Membranes: Coupling Plasma Treatment with Chemical Immobilization of Tungsten-Based Catalysts. Advanced Functional Materials, 16(11), 1417-1424. doi:10.1002/adfm.200500502 es_ES
dc.description.references Méricq, J.-P., Mendret, J., Brosillon, S., & Faur, C. (2015). High performance PVDF-TiO 2 membranes for water treatment. Chemical Engineering Science, 123, 283-291. doi:10.1016/j.ces.2014.10.047 es_ES
dc.description.references Safarpour, M., Vatanpour, V., & Khataee, A. (2016). Preparation and characterization of graphene oxide/TiO2 blended PES nanofiltration membrane with improved antifouling and separation performance. Desalination, 393, 65-78. doi:10.1016/j.desal.2015.07.003 es_ES
dc.description.references Mahlambi, M. M., Vilakati, G. D., & Mamba, B. B. (2014). Synthesis, Characterization, and Visible Light Degradation of Rhodamine B Dye by Carbon-Covered Alumina Supported Pd-TiO2/Polysulfone Membranes. Separation Science and Technology, 49(14), 2124-2134. doi:10.1080/01496395.2014.917105 es_ES
dc.description.references Kumar, M., Gholamvand, Z., Morrissey, A., Nolan, K., Ulbricht, M., & Lawler, J. (2016). Preparation and characterization of low fouling novel hybrid ultrafiltration membranes based on the blends of GO−TiO2 nanocomposite and polysulfone for humic acid removal. Journal of Membrane Science, 506, 38-49. doi:10.1016/j.memsci.2016.02.005 es_ES
dc.description.references Zhang, X., Lang, W.-Z., Yan, X., Lou, Z.-Y., & Chen, X.-F. (2016). Influences of the structure parameters of multi-walled carbon nanotubes(MWNTs) on PVDF/PFSA/O-MWNTs hollow fiber ultrafiltration membranes. Journal of Membrane Science, 499, 179-190. doi:10.1016/j.memsci.2015.10.034 es_ES
dc.description.references Castro-Muñoz, R., Galiano, F., de la Iglesia, Ó., Fíla, V., Téllez, C., Coronas, J., & Figoli, A. (2019). Graphene oxide – Filled polyimide membranes in pervaporative separation of azeotropic methanol–MTBE mixtures. Separation and Purification Technology, 224, 265-272. doi:10.1016/j.seppur.2019.05.034 es_ES
dc.description.references Grasso, G., Galiano, F., Yoo, M. J., Mancuso, R., Park, H. B., Gabriele, B., … Drioli, E. (2020). Development of graphene-PVDF composite membranes for membrane distillation. Journal of Membrane Science, 604, 118017. doi:10.1016/j.memsci.2020.118017 es_ES
dc.description.references Yao, Y., Miao, S., Yu, S., Ping Ma, L., Sun, H., & Wang, S. (2012). Fabrication of Fe3O4/SiO2 core/shell nanoparticles attached to graphene oxide and its use as an adsorbent. Journal of Colloid and Interface Science, 379(1), 20-26. doi:10.1016/j.jcis.2012.04.030 es_ES
dc.description.references Zhang, X., Cheng, C., Zhao, J., Ma, L., Sun, S., & Zhao, C. (2013). Polyethersulfone enwrapped graphene oxide porous particles for water treatment. Chemical Engineering Journal, 215-216, 72-81. doi:10.1016/j.cej.2012.11.009 es_ES
dc.description.references Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., … Tour, J. M. (2010). Improved Synthesis of Graphene Oxide. ACS Nano, 4(8), 4806-4814. doi:10.1021/nn1006368 es_ES
dc.description.references Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. doi:10.1038/nmat1849 es_ES
dc.description.references Krishnamoorthy, K., Mohan, R., & Kim, S.-J. (2011). Graphene oxide as a photocatalytic material. Applied Physics Letters, 98(24), 244101. doi:10.1063/1.3599453 es_ES
dc.description.references Hou, W.-C., & Wang, Y.-S. (2017). Photocatalytic Generation of H2O2 by Graphene Oxide in Organic Electron Donor-Free Condition under Sunlight. ACS Sustainable Chemistry & Engineering, 5(4), 2994-3001. doi:10.1021/acssuschemeng.6b02635 es_ES
dc.description.references Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., … Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558-1565. doi:10.1016/j.carbon.2007.02.034 es_ES
dc.description.references Li, S., Cui, Z., Zhang, L., He, B., & Li, J. (2016). The effect of sulfonated polysulfone on the compatibility and structure of polyethersulfone-based blend membranes. Journal of Membrane Science, 513, 1-11. doi:10.1016/j.memsci.2016.04.035 es_ES
dc.description.references Tseng, H.-H., Zhuang, G.-L., & Su, Y.-C. (2012). The effect of blending ratio on the compatibility, morphology, thermal behavior and pure water permeation of asymmetric CAP/PVDF membranes. Desalination, 284, 269-278. doi:10.1016/j.desal.2011.09.011 es_ES
dc.description.references Rehan, Z., Gzara, L., Khan, S., Alamry, K., El-Shahawi, M. S., Albeirutty, M., … Asiri, A. (2016). Synthesis and Characterization of Silver Nanoparticles-Filled Polyethersulfone Membranes for Antibacterial and Anti-Biofouling Application. Recent Patents on Nanotechnology, 10(3), 231-251. doi:10.2174/1872210510666160429145228 es_ES
dc.description.references Mousavi, S. M., & Zadhoush, A. (2017). Investigation of the relation between viscoelastic properties of polysulfone solutions, phase inversion process and membrane morphology: The effect of solvent power. Journal of Membrane Science, 532, 47-57. doi:10.1016/j.memsci.2017.03.006 es_ES
dc.description.references Wongchitphimon, S., Wang, R., Jiraratananon, R., Shi, L., & Loh, C. H. (2011). Effect of polyethylene glycol (PEG) as an additive on the fabrication of polyvinylidene fluoride-co-hexafluropropylene (PVDF-HFP) asymmetric microporous hollow fiber membranes. Journal of Membrane Science, 369(1-2), 329-338. doi:10.1016/j.memsci.2010.12.008 es_ES
dc.description.references Russo, F., Galiano, F., Pedace, F., Aricò, F., & Figoli, A. (2019). Dimethyl Isosorbide As a Green Solvent for Sustainable Ultrafiltration and Microfiltration Membrane Preparation. ACS Sustainable Chemistry & Engineering, 8(1), 659-668. doi:10.1021/acssuschemeng.9b06496 es_ES
dc.description.references Russo, F., Castro-Muñoz, R., Galiano, F., & Figoli, A. (2019). Unprecedented preparation of porous Matrimid® 5218 membranes. Journal of Membrane Science, 585, 166-174. doi:10.1016/j.memsci.2019.05.036 es_ES
dc.description.references Marino, T., Galiano, F., Simone, S., & Figoli, A. (2018). DMSO EVOL™ as novel non-toxic solvent for polyethersulfone membrane preparation. Environmental Science and Pollution Research, 26(15), 14774-14785. doi:10.1007/s11356-018-3575-9 es_ES
dc.description.references Bui, V.-T., Dao, V.-D., & Choi, H.-S. (2016). Transferable thin films with sponge-like porous structure via improved phase separation. Polymer, 101, 184-191. doi:10.1016/j.polymer.2016.08.063 es_ES
dc.description.references Meng, N., Priestley, R. C. E., Zhang, Y., Wang, H., & Zhang, X. (2016). The effect of reduction degree of GO nanosheets on microstructure and performance of PVDF/GO hybrid membranes. Journal of Membrane Science, 501, 169-178. doi:10.1016/j.memsci.2015.12.004 es_ES
dc.description.references Xie, Q., Xu, J., Feng, L., Jiang, L., Tang, W., Luo, X., & Han, C. C. (2004). Facile Creation of a Super-Amphiphobic Coating Surface with Bionic Microstructure. Advanced Materials, 16(4), 302-305. doi:10.1002/adma.200306281 es_ES
dc.description.references Razmjou, A., Arifin, E., Dong, G., Mansouri, J., & Chen, V. (2012). Superhydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in membrane distillation. Journal of Membrane Science, 415-416, 850-863. doi:10.1016/j.memsci.2012.06.004 es_ES
dc.description.references Teow, Y. H., Ooi, B. S., & Ahmad, A. L. (2017). Fouling behaviours of PVDF-TiO2 mixed-matrix membrane applied to humic acid treatment. Journal of Water Process Engineering, 15, 89-98. doi:10.1016/j.jwpe.2016.03.005 es_ES
dc.description.references Wenzel, R. N. (1936). RESISTANCE OF SOLID SURFACES TO WETTING BY WATER. Industrial & Engineering Chemistry, 28(8), 988-994. doi:10.1021/ie50320a024 es_ES
dc.description.references Zhu, Z., Wang, L., Xu, Y., Li, Q., Jiang, J., & Wang, X. (2017). Preparation and characteristics of graphene oxide-blending PVDF nanohybrid membranes and their applications for hazardous dye adsorption and rejection. Journal of Colloid and Interface Science, 504, 429-439. doi:10.1016/j.jcis.2017.05.068 es_ES
dc.description.references Liu, Y., Jin, W., Zhao, Y., Zhang, G., & Zhang, W. (2017). Enhanced catalytic degradation of methylene blue by α-Fe2O3/graphene oxide via heterogeneous photo-Fenton reactions. Applied Catalysis B: Environmental, 206, 642-652. doi:10.1016/j.apcatb.2017.01.075 es_ES
dc.description.references Qin, J., Zhang, X., Yang, C., Cao, M., Ma, M., & Liu, R. (2017). ZnO microspheres-reduced graphene oxide nanocomposite for photocatalytic degradation of methylene blue dye. Applied Surface Science, 392, 196-203. doi:10.1016/j.apsusc.2016.09.043 es_ES
dc.description.references Oliveira, L. C. A., Gonçalves, M., Guerreiro, M. C., Ramalho, T. C., Fabris, J. D., Pereira, M. C., & Sapag, K. (2007). A new catalyst material based on niobia/iron oxide composite on the oxidation of organic contaminants in water via heterogeneous Fenton mechanisms. Applied Catalysis A: General, 316(1), 117-124. doi:10.1016/j.apcata.2006.09.027 es_ES
dc.description.references Houas, A. (2001). Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis B: Environmental, 31(2), 145-157. doi:10.1016/s0926-3373(00)00276-9 es_ES
dc.description.references Kamble, S. P., Mangrulkar, P. A., Bansiwal, A. K., & Rayalu, S. S. (2008). Adsorption of phenol and o-chlorophenol on surface altered fly ash based molecular sieves. Chemical Engineering Journal, 138(1-3), 73-83. doi:10.1016/j.cej.2007.05.030 es_ES
dc.description.references Sirtori, C., Agüera, A., Gernjak, W., & Malato, S. (2010). Effect of water-matrix composition on Trimethoprim solar photodegradation kinetics and pathways. Water Research, 44(9), 2735-2744. doi:10.1016/j.watres.2010.02.006 es_ES
dc.description.references Yap, P.-S., & Lim, T.-T. (2011). Effect of aqueous matrix species on synergistic removal of bisphenol-A under solar irradiation using nitrogen-doped TiO2/AC composite. Applied Catalysis B: Environmental, 101(3-4), 709-717. doi:10.1016/j.apcatb.2010.11.013 es_ES
dc.description.references Stuart, M. A. C., Fleer, G. J., Lyklema, J., Norde, W., & Scheutjens, J. M. H. M. (1991). Adsorption of Ions, Polyelectrolytes and Proteins. Advances in Colloid and Interface Science, 34, 477-535. doi:10.1016/0001-8686(91)80056-p es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem