- -

One-part eco-cellular concrete for the precast industry: functional features and life cycle assessment

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

One-part eco-cellular concrete for the precast industry: functional features and life cycle assessment

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Font-Pérez, Alba es_ES
dc.contributor.author Soriano Martinez, Lourdes es_ES
dc.contributor.author Tashima, M.M. es_ES
dc.contributor.author Monzó Balbuena, José Mª es_ES
dc.contributor.author Borrachero Rosado, María Victoria es_ES
dc.contributor.author Paya Bernabeu, Jorge Juan es_ES
dc.date.accessioned 2021-05-25T03:32:42Z
dc.date.available 2021-05-25T03:32:42Z
dc.date.issued 2020-10-01 es_ES
dc.identifier.issn 0959-6526 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166750
dc.description.abstract [EN] This paper focuses on investigating greener alternatives of cellular concrete technology to fulfil current searches for a shift to circular economy. A novel one-part eco-cellular concrete (ECC-OP) was developed and studied. The one-part alkali activated materials (AAM-OP) and new alkali-activated cellular concrete (AACC) technologies were combined to develop greener alternative of cellular concrete production. The progressive steps from traditional cellular concrete (TCC) based on ordinary Portland cement (OPC) and commercial aluminium powder (A) to a 100% waste-based cellular concrete are presented. Blast furnace slag (BFS) was the precursor, RHA was employed as the silica source, olive stone biomass ash (OBA) was the alkali source and recycled aluminium foil (AR) was employed as an aerating agent. The functional features of the materials were studied and compared to those established by the European standard and the American Concrete Institute (ACI) Committee 523 guides. The new ECC-OP with a bulk density, compressive strength and thermal conductivity that respectively equal 660 kg/m(3), 6.3 MPa and 0.20 W/ mK was obtained. Finally, a cradle-to-gate life cycle assessment (LCA) was made, where the industrial process of a masonry unit manufacture was raised by using each studied material. A 96% reduction in the kgCO(2)eq per m(3) of material was reached with the new proposed ECC-OP compared to TCC manufacturing. (C) 2020 Elsevier Ltd. All rights reserved. es_ES
dc.description.sponsorship The authors gratefully acknowledge the GeocelPlus-UPV Project, Almazara Candela - Elche, Spain and DACSA S.A. - Tabernes Blanques, Spain and Cementval - Puerto de Sagunto, Spain. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Cleaner Production es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject One-part alkali-activated material es_ES
dc.subject Cellular concrete es_ES
dc.subject Life cycle assessment es_ES
dc.subject CO2 emissions es_ES
dc.subject Blast furnace slag es_ES
dc.subject Biomass ash es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title One-part eco-cellular concrete for the precast industry: functional features and life cycle assessment es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jclepro.2020.122203 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó es_ES
dc.description.bibliographicCitation Font-Pérez, A.; Soriano Martinez, L.; Tashima, M.; Monzó Balbuena, JM.; Borrachero Rosado, MV.; Paya Bernabeu, JJ. (2020). One-part eco-cellular concrete for the precast industry: functional features and life cycle assessment. Journal of Cleaner Production. 269:1-14. https://doi.org/10.1016/j.jclepro.2020.122203 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jclepro.2020.122203 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 269 es_ES
dc.relation.pasarela S\430879 es_ES
dc.description.references Bai, C., & Colombo, P. (2018). Processing, properties and applications of highly porous geopolymers: A review. Ceramics International, 44(14), 16103-16118. doi:10.1016/j.ceramint.2018.05.219 es_ES
dc.description.references Bouzón, N., Payá, J., Borrachero, M. V., Soriano, L., Tashima, M. M., & Monzó, J. (2014). Refluxed rice husk ash/NaOH suspension for preparing alkali activated binders. Materials Letters, 115, 72-74. doi:10.1016/j.matlet.2013.10.001 es_ES
dc.description.references Chen, Y.-L., Ko, M.-S., Chang, J.-E., & Lin, C.-T. (2018). Recycling of desulfurization slag for the production of autoclaved aerated concrete. Construction and Building Materials, 158, 132-140. doi:10.1016/j.conbuildmat.2017.09.195 es_ES
dc.description.references Chica, L., & Alzate, A. (2019). Cellular concrete review: New trends for application in construction. Construction and Building Materials, 200, 637-647. doi:10.1016/j.conbuildmat.2018.12.136 es_ES
dc.description.references Choo, H., Lim, S., Lee, W., & Lee, C. (2016). Compressive strength of one-part alkali activated fly ash using red mud as alkali supplier. Construction and Building Materials, 125, 21-28. doi:10.1016/j.conbuildmat.2016.08.015 es_ES
dc.description.references Colangelo, F., Forcina, A., Farina, I., & Petrillo, A. (2018). Life Cycle Assessment (LCA) of Different Kinds of Concrete Containing Waste for Sustainable Construction. Buildings, 8(5), 70. doi:10.3390/buildings8050070 es_ES
dc.description.references Dahmen, J., Kim, J., & Ouellet-Plamondon, C. M. (2018). Life cycle assessment of emergent masonry blocks. Journal of Cleaner Production, 171, 1622-1637. doi:10.1016/j.jclepro.2017.10.044 es_ES
dc.description.references De Moraes Pinheiro, S. M., Font, A., Soriano, L., Tashima, M. M., Monzó, J., Borrachero, M. V., & Payá, J. (2018). Olive-stone biomass ash (OBA): An alternative alkaline source for the blast furnace slag activation. Construction and Building Materials, 178, 327-338. doi:10.1016/j.conbuildmat.2018.05.157 es_ES
dc.description.references Esmaily, H., & Nuranian, H. (2012). Non-autoclaved high strength cellular concrete from alkali activated slag. Construction and Building Materials, 26(1), 200-206. doi:10.1016/j.conbuildmat.2011.06.010 es_ES
dc.description.references Font, A., Borrachero, M. V., Soriano, L., Monzó, J., Mellado, A., & Payá, J. (2018). New eco-cellular concretes: sustainable and energy-efficient materials. Green Chemistry, 20(20), 4684-4694. doi:10.1039/c8gc02066c es_ES
dc.description.references Font, A., Borrachero, M. V., Soriano, L., Monzó, J., & Payá, J. (2017). Geopolymer eco-cellular concrete (GECC) based on fluid catalytic cracking catalyst residue (FCC) with addition of recycled aluminium foil powder. Journal of Cleaner Production, 168, 1120-1131. doi:10.1016/j.jclepro.2017.09.110 es_ES
dc.description.references Font, A., Soriano, L., de Moraes Pinheiro, S. M., Tashima, M. M., Monzó, J., Borrachero, M. V., & Payá, J. (2020). Design and properties of 100% waste-based ternary alkali-activated mortars: Blast furnace slag, olive-stone biomass ash and rice husk ash. Journal of Cleaner Production, 243, 118568. doi:10.1016/j.jclepro.2019.118568 es_ES
dc.description.references Font, A., Soriano, L., Moraes, J. C. B., Tashima, M. M., Monzó, J., Borrachero, M. V., & Payá, J. (2017). A 100% waste-based alkali-activated material by using olive-stone biomass ash (OBA) and blast furnace slag (BFS). Materials Letters, 203, 46-49. doi:10.1016/j.matlet.2017.05.129 es_ES
dc.description.references Hajimohammadi, A., Ngo, T., Mendis, P., Kashani, A., & van Deventer, J. S. J. (2017). Alkali activated slag foams: The effect of the alkali reaction on foam characteristics. Journal of Cleaner Production, 147, 330-339. doi:10.1016/j.jclepro.2017.01.134 es_ES
dc.description.references Hassan, H. S., Abdel-Gawwad, H. A., García, S. R. V., & Israde-Alcántara, I. (2018). Fabrication and characterization of thermally-insulating coconut ash-based geopolymer foam. Waste Management, 80, 235-240. doi:10.1016/j.wasman.2018.09.022 es_ES
dc.description.references He, J., Gao, Q., Song, X., Bu, X., & He, J. (2019). Effect of foaming agent on physical and mechanical properties of alkali-activated slag foamed concrete. Construction and Building Materials, 226, 280-287. doi:10.1016/j.conbuildmat.2019.07.302 es_ES
dc.description.references Kamseu, E., NGouloure, Z. N. M., Ali, B. N., Zekeng, S., Melo, U. C., Rossignol, S., & Leonelli, C. (2015). Cumulative pore volume, pore size distribution and phases percolation in porous inorganic polymer composites: Relation microstructure and effective thermal conductivity. Energy and Buildings, 88, 45-56. doi:10.1016/j.enbuild.2014.11.066 es_ES
dc.description.references Keawpapasson, P., Tippayasam, C., Ruangjan, S., Thavorniti, P., Panyathanmaporn, T., Fontaine, A., … Chaysuwan, D. (2014). Metakaolin-Based Porous Geopolymer with Aluminium Powder. Key Engineering Materials, 608, 132-138. doi:10.4028/www.scientific.net/kem.608.132 es_ES
dc.description.references Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Kinnunen, P., & Illikainen, M. (2018). One-part alkali-activated materials: A review. Cement and Concrete Research, 103, 21-34. doi:10.1016/j.cemconres.2017.10.001 es_ES
dc.description.references Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Kinnunen, P., & Illikainen, M. (2018). Comparison of alkali and silica sources in one-part alkali-activated blast furnace slag mortar. Journal of Cleaner Production, 187, 171-179. doi:10.1016/j.jclepro.2018.03.202 es_ES
dc.description.references Ma, C., Zhao, B., Guo, S., Long, G., & Xie, Y. (2019). Properties and characterization of green one-part geopolymer activated by composite activators. Journal of Cleaner Production, 220, 188-199. doi:10.1016/j.jclepro.2019.02.159 es_ES
dc.description.references Mellado, A., Catalán, C., Bouzón, N., Borrachero, M. V., Monzó, J. M., & Payá, J. (2014). Carbon footprint of geopolymeric mortar: study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Adv., 4(45), 23846-23852. doi:10.1039/c4ra03375b es_ES
dc.description.references Moraes, J. C. B., Font, A., Soriano, L., Akasaki, J. L., Tashima, M. M., Monzó, J., … Payá, J. (2018). New use of sugar cane straw ash in alkali-activated materials: A silica source for the preparation of the alkaline activator. Construction and Building Materials, 171, 611-621. doi:10.1016/j.conbuildmat.2018.03.230 es_ES
dc.description.references Novais, R. M., Buruberri, L. H., Seabra, M. P., Bajare, D., & Labrincha, J. A. (2016). Novel porous fly ash-containing geopolymers for pH buffering applications. Journal of Cleaner Production, 124, 395-404. doi:10.1016/j.jclepro.2016.02.114 es_ES
dc.description.references Novais, R. M., Senff, L., Carvalheiras, J., Seabra, M. P., Pullar, R. C., & Labrincha, J. A. (2019). Sustainable and efficient cork - inorganic polymer composites: An innovative and eco-friendly approach to produce ultra-lightweight and low thermal conductivity materials. Cement and Concrete Composites, 97, 107-117. doi:10.1016/j.cemconcomp.2018.12.024 es_ES
dc.description.references Peys, A., Rahier, H., & Pontikes, Y. (2016). Potassium-rich biomass ashes as activators in metakaolin-based inorganic polymers. Applied Clay Science, 119, 401-409. doi:10.1016/j.clay.2015.11.003 es_ES
dc.description.references Puertas, F., & Torres-Carrasco, M. (2014). Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterisation. Cement and Concrete Research, 57, 95-104. doi:10.1016/j.cemconres.2013.12.005 es_ES
dc.description.references Robayo-Salazar, R., Mejía-Arcila, J., Mejía de Gutiérrez, R., & Martínez, E. (2018). Life cycle assessment (LCA) of an alkali-activated binary concrete based on natural volcanic pozzolan: A comparative analysis to OPC concrete. Construction and Building Materials, 176, 103-111. doi:10.1016/j.conbuildmat.2018.05.017 es_ES
dc.description.references Stoleriu, S., Vlasceanu, I. N., Dima, C., Badanoiu, A. I., & Voicu, G. (2019). Alkali activated materials based on glass waste and slag for thermal and acoustic insulation. Materiales de Construcción, 69(335), 194. doi:10.3989/mc.2019.08518 es_ES
dc.description.references Sturm, P., Gluth, G. J. G., Brouwers, H. J. H., & Kühne, H.-C. (2016). Synthesizing one-part geopolymers from rice husk ash. Construction and Building Materials, 124, 961-966. doi:10.1016/j.conbuildmat.2016.08.017 es_ES
dc.description.references Van den Heede, P., & De Belie, N. (2012). Environmental impact and life cycle assessment (LCA) of traditional and ‘green’ concretes: Literature review and theoretical calculations. Cement and Concrete Composites, 34(4), 431-442. doi:10.1016/j.cemconcomp.2012.01.004 es_ES
dc.description.references Xuan, D., Tang, P., & Poon, C. S. (2019). MSWIBA-based cellular alkali-activated concrete incorporating waste glass powder. Cement and Concrete Composites, 95, 128-136. doi:10.1016/j.cemconcomp.2018.10.018 es_ES
dc.description.references Yang, K.-H., Lee, K.-H., Song, J.-K., & Gong, M.-H. (2014). Properties and sustainability of alkali-activated slag foamed concrete. Journal of Cleaner Production, 68, 226-233. doi:10.1016/j.jclepro.2013.12.068 es_ES
dc.description.references Zabalza Bribián, I., Valero Capilla, A., & Aranda Usón, A. (2011). Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Building and Environment, 46(5), 1133-1140. doi:10.1016/j.buildenv.2010.12.002 es_ES
dc.description.references Ziegler, D., Formia, A., Tulliani, J.-M., & Palmero, P. (2016). Environmentally-Friendly Dense and Porous Geopolymers Using Fly Ash and Rice Husk Ash as Raw Materials. Materials, 9(6), 466. doi:10.3390/ma9060466 es_ES
dc.subject.ods 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem