- -

Territorial Planning for Photovoltaic Power Plants using an outranking approach and GIS

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Territorial Planning for Photovoltaic Power Plants using an outranking approach and GIS

Show simple item record

Files in this item

dc.contributor.author Marqués Pérez, Inmaculada es_ES
dc.contributor.author Guaita-Pradas, Inmaculada es_ES
dc.contributor.author Gallego Salguero, Aurea Cecilia es_ES
dc.contributor.author Segura García Del Río, Baldomero es_ES
dc.date.accessioned 2021-05-25T03:33:03Z
dc.date.available 2021-05-25T03:33:03Z
dc.date.issued 2020-06-01 es_ES
dc.identifier.issn 0959-6526 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166755
dc.description.abstract [EN] In 2015 the Paris Agreement set the goals for reducing greenhouse gas emissions. To achieve these objectives, it is necessary to boost electricity generation coming from renewable energy sources, particularly solar energy. Finding areas that are suitable for solar farm development is crucial for the economic feasibility of these projects and the sustainable use of land. This research investigates how to identify optimal sites for the development of solar plants. A GIS-based approach combined with a Multi-Criteria Evaluation methodology is used to create a map which shows a ranking of areas with high potential for solar farm development. The GIS-based methodology is employed in the treatment of the legal and environmental criteria and sub-criteria to delimit the suitable locations. These locations are evaluated and ranked by order using the PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluations). The importance of each criteria and sub-criteria is determined by an Analytic Hierarchy Process (AHP). In the Valencian Community the most discriminating criterion, when selecting the best locations, is the intensity of solar radiation, while temperature is the least discriminant. In terms of areas, the most suitable are located in the province of Alicante, while the least suitable are in the north of the Castellon province. It is also observed that the most appropriate locations are those that have greater solar radiation, and/or are at a lower altitude. (C) 2020 Elsevier Ltd. All rights reserved. es_ES
dc.description.sponsorship The authors acknowledge the support received from the Generalitat Valenciana through the research project "Sustainability of the Food Value Chain: From Production to Responsible Consumption" (Ref. AICO/2017/066). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Cleaner Production es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Solar farms es_ES
dc.subject Solar energy es_ES
dc.subject Grid connection es_ES
dc.subject Best sites es_ES
dc.subject MCDM es_ES
dc.subject GIS es_ES
dc.subject AHP es_ES
dc.subject PROMETHE es_ES
dc.subject.classification ECONOMIA, SOCIOLOGIA Y POLITICA AGRARIA es_ES
dc.subject.classification ECONOMIA FINANCIERA Y CONTABILIDAD es_ES
dc.subject.classification INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA es_ES
dc.title Territorial Planning for Photovoltaic Power Plants using an outranking approach and GIS es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jclepro.2020.120602 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2017%2F066/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Economía y Ciencias Sociales - Departament d'Economia i Ciències Socials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria es_ES
dc.description.bibliographicCitation Marqués Pérez, I.; Guaita-Pradas, I.; Gallego Salguero, AC.; Segura García Del Río, B. (2020). Territorial Planning for Photovoltaic Power Plants using an outranking approach and GIS. Journal of Cleaner Production. 257:1-17. https://doi.org/10.1016/j.jclepro.2020.120602 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jclepro.2020.120602 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 257 es_ES
dc.relation.pasarela S\404823 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Akıncı, H., Özalp, A. Y., & Turgut, B. (2013). Agricultural land use suitability analysis using GIS and AHP technique. Computers and Electronics in Agriculture, 97, 71-82. doi:10.1016/j.compag.2013.07.006 es_ES
dc.description.references Al Garni, H. Z., Awasthi, A., & Ramli, M. A. M. (2018). Optimal design and analysis of grid-connected photovoltaic under different tracking systems using HOMER. Energy Conversion and Management, 155, 42-57. doi:10.1016/j.enconman.2017.10.090 es_ES
dc.description.references Cavazzi, S., & Dutton, A. G. (2016). An Offshore Wind Energy Geographic Information System (OWE-GIS) for assessment of the UK’s offshore wind energy potential. Renewable Energy, 87, 212-228. doi:10.1016/j.renene.2015.09.021 es_ES
dc.description.references Chiabrando, R., Fabrizio, E., & Garnero, G. (2009). The territorial and landscape impacts of photovoltaic systems: Definition of impacts and assessment of the glare risk. Renewable and Sustainable Energy Reviews, 13(9), 2441-2451. doi:10.1016/j.rser.2009.06.008 es_ES
dc.description.references Doorga, J. R. S., Rughooputh, S. D. D. V., & Boojhawon, R. (2019). Multi-criteria GIS-based modelling technique for identifying potential solar farm sites: A case study in Mauritius. Renewable Energy, 133, 1201-1219. doi:10.1016/j.renene.2018.08.105 es_ES
dc.description.references Firozjaei, M. K., Nematollahi, O., Mijani, N., Shorabeh, S. N., Firozjaei, H. K., & Toomanian, A. (2019). An integrated GIS-based Ordered Weighted Averaging analysis for solar energy evaluation in Iran: Current conditions and future planning. Renewable Energy, 136, 1130-1146. doi:10.1016/j.renene.2018.09.090 es_ES
dc.description.references Fung, T., & Wong, F. K.-K. (2007). Ecotourism planning using multiple criteria evaluation with GIS. Geocarto International, 22(2), 87-105. doi:10.1080/10106040701207332 es_ES
dc.description.references García-Cascales, M. S., & Lamata, M. T. (2012). On rank reversal and TOPSIS method. Mathematical and Computer Modelling, 56(5-6), 123-132. doi:10.1016/j.mcm.2011.12.022 es_ES
dc.description.references Georgopoulou, E., Sarafidis, Y., & Diakoulaki, D. (1998). Design and implementation of a group DSS for sustaining renewable energies exploitation. European Journal of Operational Research, 109(2), 483-500. doi:10.1016/s0377-2217(98)00072-1 es_ES
dc.description.references Janke, J. R. (2010). Multicriteria GIS modeling of wind and solar farms in Colorado. Renewable Energy, 35(10), 2228-2234. doi:10.1016/j.renene.2010.03.014 es_ES
dc.description.references Jo, J. H., & Otanicar, T. P. (2011). A hierarchical methodology for the mesoscale assessment of building integrated roof solar energy systems. Renewable Energy, 36(11), 2992-3000. doi:10.1016/j.renene.2011.03.038 es_ES
dc.description.references Joerin, F., Thériault, M., & Musy, A. (2001). Using GIS and outranking multicriteria analysis for land-use suitability assessment. International Journal of Geographical Information Science, 15(2), 153-174. doi:10.1080/13658810051030487 es_ES
dc.description.references Kaldellis, J. K., Zafirakis, D., & Kondili, E. (2010). Energy pay-back period analysis of stand-alone photovoltaic systems. Renewable Energy, 35(7), 1444-1454. doi:10.1016/j.renene.2009.12.016 es_ES
dc.description.references Kumar, A., Sah, B., Singh, A. R., Deng, Y., He, X., Kumar, P., & Bansal, R. C. (2017). A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renewable and Sustainable Energy Reviews, 69, 596-609. doi:10.1016/j.rser.2016.11.191 es_ES
dc.description.references Macharis, C., Turcksin, L., & Lebeau, K. (2012). Multi actor multi criteria analysis (MAMCA) as a tool to support sustainable decisions: State of use. Decision Support Systems, 54(1), 610-620. doi:10.1016/j.dss.2012.08.008 es_ES
dc.description.references Maleki, A., Pourfayaz, F., Hafeznia, H., & Rosen, M. A. (2017). A novel framework for optimal photovoltaic size and location in remote areas using a hybrid method: A case study of eastern Iran. Energy Conversion and Management, 153, 129-143. doi:10.1016/j.enconman.2017.09.061 es_ES
dc.description.references Mendas, A., & Delali, A. (2012). Integration of MultiCriteria Decision Analysis in GIS to develop land suitability for agriculture: Application to durum wheat cultivation in the region of Mleta in Algeria. Computers and Electronics in Agriculture, 83, 117-126. doi:10.1016/j.compag.2012.02.003 es_ES
dc.description.references Shanian, A., Milani, A. S., Carson, C., & Abeyaratne, R. C. (2008). A new application of ELECTRE III and revised Simos’ procedure for group material selection under weighting uncertainty. Knowledge-Based Systems, 21(7), 709-720. doi:10.1016/j.knosys.2008.03.028 es_ES
dc.description.references Alam Hossain Mondal, M., & Sadrul Islam, A. K. M. (2011). Potential and viability of grid-connected solar PV system in Bangladesh. Renewable Energy, 36(6), 1869-1874. doi:10.1016/j.renene.2010.11.033 es_ES
dc.description.references Morinha, F., Bastos, R., Carvalho, D., Travassos, P., Santos, M., Blanco, G., … Cabral, J. A. (2017). A spatially-explicit dynamic modelling framework to assess habitat suitability for endangered species: The case of Red-billed Chough under land use change scenarios in Portugal. Biological Conservation, 210, 96-106. doi:10.1016/j.biocon.2017.04.013 es_ES
dc.description.references Muñoz, J. I., Sánchez de la Nieta, A. A., Contreras, J., & Bernal-Agustín, J. L. (2009). Optimal investment portfolio in renewable energy: The Spanish case. Energy Policy, 37(12), 5273-5284. doi:10.1016/j.enpol.2009.07.050 es_ES
dc.description.references Nas, B., Cay, T., Iscan, F., & Berktay, A. (2009). Selection of MSW landfill site for Konya, Turkey using GIS and multi-criteria evaluation. Environmental Monitoring and Assessment, 160(1-4), 491-500. doi:10.1007/s10661-008-0713-8 es_ES
dc.description.references Perpiña Castillo, C., Batista e Silva, F., & Lavalle, C. (2016). An assessment of the regional potential for solar power generation in EU-28. Energy Policy, 88, 86-99. doi:10.1016/j.enpol.2015.10.004 es_ES
dc.description.references Saaty, T. L., & Hu, G. (1998). Ranking by Eigenvector versus other methods in the Analytic Hierarchy Process. Applied Mathematics Letters, 11(4), 121-125. doi:10.1016/s0893-9659(98)00068-8 es_ES
dc.description.references Samanlioglu, F., & Ayağ, Z. (2017). A fuzzy AHP-PROMETHEE II approach for evaluation of solar power plant location alternatives in Turkey. Journal of Intelligent & Fuzzy Systems, 33(2), 859-871. doi:10.3233/jifs-162122 es_ES
dc.description.references Sánchez-Lozano, J. M., Teruel-Solano, J., Soto-Elvira, P. L., & Socorro García-Cascales, M. (2013). Geographical Information Systems (GIS) and Multi-Criteria Decision Making (MCDM) methods for the evaluation of solar farms locations: Case study in south-eastern Spain. Renewable and Sustainable Energy Reviews, 24, 544-556. doi:10.1016/j.rser.2013.03.019 es_ES
dc.description.references Sánchez-Lozano, J. M., García-Cascales, M. S., & Lamata, M. T. (2016). Comparative TOPSIS-ELECTRE TRI methods for optimal sites for photovoltaic solar farms. Case study in Spain. Journal of Cleaner Production, 127, 387-398. doi:10.1016/j.jclepro.2016.04.005 es_ES
dc.description.references Segura, M., Maroto, C., Belton, V., & Ginestar, C. (2015). A New Collaborative Methodology for Assessment and Management of Ecosystem Services. Forests, 6(12), 1696-1720. doi:10.3390/f6051696 es_ES
dc.description.references Skoplaki, E., Boudouvis, A. G., & Palyvos, J. A. (2008). A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting. Solar Energy Materials and Solar Cells, 92(11), 1393-1402. doi:10.1016/j.solmat.2008.05.016 es_ES
dc.description.references Song, D., Jiao, H., & Fan, C. T. (2015). Overview of the photovoltaic technology status and perspective in China. Renewable and Sustainable Energy Reviews, 48, 848-856. doi:10.1016/j.rser.2015.04.001 es_ES
dc.description.references Šúri, M., Huld, T. A., Dunlop, E. D., & Ossenbrink, H. A. (2007). Potential of solar electricity generation in the European Union member states and candidate countries. Solar Energy, 81(10), 1295-1305. doi:10.1016/j.solener.2006.12.007 es_ES
dc.description.references Tomosk, S., Haysom, J. E., Hinzer, K., Schriemer, H., & Wright, D. (2017). Mapping the geographic distribution of the economic viability of photovoltaic load displacement projects in SW USA. Renewable Energy, 107, 101-112. doi:10.1016/j.renene.2017.01.049 es_ES
dc.description.references Trappey, A. J. C., Trappey, C. V., Tan, H., Liu, P. H. Y., Li, S.-J., & Lin, L.-C. (2016). The determinants of photovoltaic system costs: an evaluation using a hierarchical learning curve model. Journal of Cleaner Production, 112, 1709-1716. doi:10.1016/j.jclepro.2015.08.095 es_ES
dc.description.references Wang, S., Zhang, L., Fu, D., Lu, X., Wu, T., & Tong, Q. (2016). Selecting photovoltaic generation sites in Tibet using remote sensing and geographic analysis. Solar Energy, 133, 85-93. doi:10.1016/j.solener.2016.03.069 es_ES
dc.description.references Yushchenko, A., de Bono, A., Chatenoux, B., Kumar Patel, M., & Ray, N. (2018). GIS-based assessment of photovoltaic (PV) and concentrated solar power (CSP) generation potential in West Africa. Renewable and Sustainable Energy Reviews, 81, 2088-2103. doi:10.1016/j.rser.2017.06.021 es_ES
dc.description.references Zabihi, H., Ahmad, A., Vogeler, I., Said, M. N., Golmohammadi, M., Golein, B., & Nilashi, M. (2015). Land suitability procedure for sustainable citrus planning using the application of the analytical network process approach and GIS. Computers and Electronics in Agriculture, 117, 114-126. doi:10.1016/j.compag.2015.07.014 es_ES
dc.subject.ods 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos es_ES
dc.subject.ods 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos es_ES


This item appears in the following Collection(s)

Show simple item record