Mostrar el registro sencillo del ítem
dc.contributor.author | Coronado-Hernández, Óscar E. | es_ES |
dc.contributor.author | Fuertes-Miquel, Vicente S. | es_ES |
dc.contributor.author | Quiñones-Bolaños, Edgar E. | es_ES |
dc.contributor.author | Gatica, Gustavo | es_ES |
dc.contributor.author | Coronado-Hernández, Jairo R. | es_ES |
dc.date.accessioned | 2021-05-25T03:33:24Z | |
dc.date.available | 2021-05-25T03:33:24Z | |
dc.date.issued | 2020-09 | es_ES |
dc.identifier.issn | 2073-4441 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166763 | |
dc.description.abstract | [EN] The draining operation involves the presence of entrapped air pockets, which are expanded during the phenomenon occurrence generating drops of sub-atmospheric pressure pulses. Vacuum air valves should inject enough air to prevent sub-atmospheric pressure conditions. Recently, this phenomenon has been studied by the authors with an inertial model, obtaining a complex formulation based on a system composed by algebraic-di erential equations. This research simplifies this complex formulation by neglecting the inertial term, thus the Bernoulli¿s equation can be used. Results show how the inertial model and the simplified mathematical model provide similar results of the evolution of main hydraulic and thermodynamic variables. The simplified mathematical model is also verified using experimental tests of air pocket pressure, water velocity, and position of the water column. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Water | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Hydraulic transients | es_ES |
dc.subject | Air-water interface | es_ES |
dc.subject | Air valves | es_ES |
dc.subject | Bernoulli's equation | es_ES |
dc.subject | Draining | es_ES |
dc.subject.classification | MECANICA DE FLUIDOS | es_ES |
dc.title | Simplified Mathematical Model for Computing Draining Operations in Pipelines of Undulating Profiles with Vacuum Air Valves | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/w12092544 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Coronado-Hernández, ÓE.; Fuertes-Miquel, VS.; Quiñones-Bolaños, EE.; Gatica, G.; Coronado-Hernández, JR. (2020). Simplified Mathematical Model for Computing Draining Operations in Pipelines of Undulating Profiles with Vacuum Air Valves. Water. 12(9):1-12. https://doi.org/10.3390/w12092544 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/w12092544 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 9 | es_ES |
dc.relation.pasarela | S\433535 | es_ES |
dc.description.references | Fuertes-Miquel, V. S., Coronado-Hernández, O. E., Mora-Meliá, D., & Iglesias-Rey, P. L. (2019). Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review. Urban Water Journal, 16(4), 299-311. doi:10.1080/1573062x.2019.1669188 | es_ES |
dc.description.references | Fuertes-Miquel, V. S., Coronado-Hernández, O. E., Iglesias-Rey, P. L., & Mora-Meliá, D. (2018). Transient phenomena during the emptying process of a single pipe with water–air interaction. Journal of Hydraulic Research, 57(3), 318-326. doi:10.1080/00221686.2018.1492465 | es_ES |
dc.description.references | Tijsseling, A. S., Hou, Q., Bozkuş, Z., & Laanearu, J. (2015). Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines. Journal of Pressure Vessel Technology, 138(3). doi:10.1115/1.4031508 | es_ES |
dc.description.references | Coronado-Hernández, O. E., Fuertes-Miquel, V. S., Besharat, M., & Ramos, H. M. (2018). Subatmospheric pressure in a water draining pipeline with an air pocket. Urban Water Journal, 15(4), 346-352. doi:10.1080/1573062x.2018.1475578 | es_ES |
dc.description.references | Ramezani, L., Karney, B., & Malekpour, A. (2016). Encouraging Effective Air Management in Water Pipelines: A Critical Review. Journal of Water Resources Planning and Management, 142(12), 04016055. doi:10.1061/(asce)wr.1943-5452.0000695 | es_ES |
dc.description.references | Zhou, L., & Liu, D. (2013). Experimental investigation of entrapped air pocket in a partially full water pipe. Journal of Hydraulic Research, 51(4), 469-474. doi:10.1080/00221686.2013.785985 | es_ES |
dc.description.references | Carlos, M., Arregui, F. J., Cabrera, E., & Palau, C. V. (2011). Understanding Air Release through Air Valves. Journal of Hydraulic Engineering, 137(4), 461-469. doi:10.1061/(asce)hy.1943-7900.0000324 | es_ES |
dc.description.references | Bianchi, A., Mambretti, S., & Pianta, P. (2007). Practical Formulas for the Dimensioning of Air Valves. Journal of Hydraulic Engineering, 133(10), 1177-1180. doi:10.1061/(asce)0733-9429(2007)133:10(1177) | es_ES |
dc.description.references | Ramezani, L., Karney, B., & Malekpour, A. (2015). The Challenge of Air Valves: A Selective Critical Literature Review. Journal of Water Resources Planning and Management, 141(10), 04015017. doi:10.1061/(asce)wr.1943-5452.0000530 | es_ES |
dc.description.references | Coronado-Hernández, O., Fuertes-Miquel, V., Besharat, M., & Ramos, H. (2017). Experimental and Numerical Analysis of a Water Emptying Pipeline Using Different Air Valves. Water, 9(2), 98. doi:10.3390/w9020098 | es_ES |
dc.description.references | Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vučković, S., Hou, Q., … van’t Westende, J. M. C. (2012). Emptying of Large-Scale Pipeline by Pressurized Air. Journal of Hydraulic Engineering, 138(12), 1090-1100. doi:10.1061/(asce)hy.1943-7900.0000631 | es_ES |
dc.description.references | Coronado-Hernández, O. E., Fuertes-Miquel, V. S., Iglesias-Rey, P. L., & Martínez-Solano, F. J. (2018). Rigid Water Column Model for Simulating the Emptying Process in a Pipeline Using Pressurized Air. Journal of Hydraulic Engineering, 144(4), 06018004. doi:10.1061/(asce)hy.1943-7900.0001446 | es_ES |
dc.description.references | Coronado-Hernández, O. E., Fuertes-Miquel, V. S., Iglesias-Rey, P. L., & Martínez-Solano, F. J. (2020). Closure to «Rigid Water Column Model for Simulating the Emptying Process in a Pipeline Using Pressurized Air» by Oscar E. Coronado-Hernández, Vicente S. Fuertes-Miquel, Pedro L. Iglesias-Rey, and Francisco J. Martínez-Solano. Journal of Hydraulic Engineering, 146(3), 07020002. doi:10.1061/(asce)hy.1943-7900.0001681 | es_ES |
dc.description.references | Vasconcelos, J. G., & Wright, S. J. (2008). Rapid Flow Startup in Filled Horizontal Pipelines. Journal of Hydraulic Engineering, 134(7), 984-992. doi:10.1061/(asce)0733-9429(2008)134:7(984) | es_ES |
dc.description.references | Vasconcelos, J. G., Klaver, P. R., & Lautenbach, D. J. (2014). Flow regime transition simulation incorporating entrapped air pocket effects. Urban Water Journal, 12(6), 488-501. doi:10.1080/1573062x.2014.881892 | es_ES |
dc.description.references | Wang, L., Wang, F., & Lei, X. (2018). Investigation on friction models for simulation of pipeline filling transients. Journal of Hydraulic Research, 56(6), 888-895. doi:10.1080/00221686.2018.1434693 | es_ES |
dc.description.references | Malekpour, A., Karney, B. W., & Nault, J. (2016). Physical Understanding of Sudden Pressurization of Pipe Systems with Entrapped Air: Energy Auditing Approach. Journal of Hydraulic Engineering, 142(2), 04015044. doi:10.1061/(asce)hy.1943-7900.0001067 | es_ES |
dc.description.references | Coronado-Hernández, Ó. E., Fuertes-Miquel, V. S., Mora-Meliá, D., & Salgueiro, Y. (2020). Quasi-static Flow Model for Predicting the Extreme Values of Air Pocket Pressure in Draining and Filling Operations in Single Water Installations. Water, 12(3), 664. doi:10.3390/w12030664 | es_ES |
dc.description.references | Leon, A. S., Ghidaoui, M. S., Schmidt, A. R., & Garcia, M. H. (2010). A robust two-equation model for transient-mixed flows. Journal of Hydraulic Research, 48(1), 44-56. doi:10.1080/00221680903565911 | es_ES |