- -

Framework and Methodology for Establishing Port-City Policies Based on Real-Time Composite Indicators and IoT: A Practical Use-Case

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Framework and Methodology for Establishing Port-City Policies Based on Real-Time Composite Indicators and IoT: A Practical Use-Case

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lacalle, Ignacio es_ES
dc.contributor.author Belsa, Andreu es_ES
dc.contributor.author Vaño, Rafael es_ES
dc.contributor.author Palau Salvador, Carlos Enrique es_ES
dc.date.accessioned 2021-05-27T03:32:36Z
dc.date.available 2021-05-27T03:32:36Z
dc.date.issued 2020-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166815
dc.description.abstract [EN] During the past few decades, the combination of flourishing maritime commerce and urban population increases has made port-cities face several challenges. Smart Port-Cities of the future will take advantage of the newest IoT technologies to tackle those challenges in a joint fashion from both the city and port side. A specific matter of interest in this work is how to obtain reliable, measurable indicators to establish port-city policies for mutual benefit. This paper proposes an IoTbased software framework, accompanied with a methodology for defining, calculating, and predicting composite indicators that represent real-world phenomena in the context of a Smart PortCity. This paper envisions, develops, and deploys the framework on a real use-case as a practice experiment. The experiment consists of deploying a composite index for monitoring traffic congestion at the port-city interface in Thessaloniki (Greece). Results were aligned with the expectations, validated through nine scenarios, concluding with delivery of a useful tool for interested actors at Smart Port-Cities to work over and build policies upon. es_ES
dc.description.sponsorship This research was funded, by the European Commission, via the agency INEA, under the H2020-project PIXEL, grant number 769355, and, when applicable, by the H2020-project DataPorts, grant number 871493, via the DG-CONNECT agency. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Smart Port-Cities es_ES
dc.subject Composite indicator es_ES
dc.subject Real-time es_ES
dc.subject Internet of Things es_ES
dc.subject Traffic congestion es_ES
dc.subject Framework and methodology es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title Framework and Methodology for Establishing Port-City Policies Based on Real-Time Composite Indicators and IoT: A Practical Use-Case es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s20154131 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/769355/EU/Port IoT for Environmental Leverage/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/871493/EU/A Data Platform for the Cognitive Ports of the Future/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Lacalle, I.; Belsa, A.; Vaño, R.; Palau Salvador, CE. (2020). Framework and Methodology for Establishing Port-City Policies Based on Real-Time Composite Indicators and IoT: A Practical Use-Case. Sensors. 20(15):1-41. https://doi.org/10.3390/s20154131 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s20154131 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 41 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 15 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 32722319 es_ES
dc.identifier.pmcid PMC7435889 es_ES
dc.relation.pasarela S\416417 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Urban Population Growthhttps://www.who.int/gho/urban_health/situation_trends/urban_population_growth_text/en/ es_ES
dc.description.references Smart Port Cityhttps://maritimestreet.fr/smart-port-city/ es_ES
dc.description.references The World’s 33 Megacitieshttps://www.msn.com/en-us/money/realestate/the-worlds-33-megacities/ar-BBUaR3v es_ES
dc.description.references DocksTheFuture Project Maritime Traffic Analysis and Forecast Review-Key Resultshttps://www.docksthefuture.eu/wp-content/uploads/2020/04/Attachment_0-2019-09-09T135818.886-1.pdf es_ES
dc.description.references Hamburg Port Authority: SmartPORThttps://www.hamburg-port-authority.de/en/hpa-360/smartport/ es_ES
dc.description.references Guo, H., Wang, L., Chen, F., & Liang, D. (2014). Scientific big data and Digital Earth. Chinese Science Bulletin, 59(35), 5066-5073. doi:10.1007/s11434-014-0645-3 es_ES
dc.description.references AIVP Agenda 2030 for Sustainable Port-Citieshttps://www.aivpagenda2030.com/ es_ES
dc.description.references Urban Transport Challengeshttps://transportgeography.org/?page_id=4621 es_ES
dc.description.references Passenger Cars in the EUhttps://ec.europa.eu/eurostat/statistics-explained/index.php/Passenger_cars_in_the_EU es_ES
dc.description.references Average CO2 Emissions from New Cars and Vans Registered in Europe Increased in 2018, Requiring Significant Emission Reductions to Meet the 2020 Targetshttps://ec.europa.eu/clima/news/average-co2-emissions-new-cars-and-vans-registered-europe-increased-2018-requiring-significant_en es_ES
dc.description.references 7 Smart City Solutions to Reduce Traffic Congestionhttps://www.geotab.com/blog/reduce-traffic-congestion/ es_ES
dc.description.references The Port and the City—Thoughts on the Relation between Cities and Portshttps://theportandthecity.wordpress.com/ es_ES
dc.description.references Yau, K.-L. A., Peng, S., Qadir, J., Low, Y.-C., & Ling, M. H. (2020). Towards Smart Port Infrastructures: Enhancing Port Activities Using Information and Communications Technology. IEEE Access, 8, 83387-83404. doi:10.1109/access.2020.2990961 es_ES
dc.description.references Two Projects Led by Valenciaport Win the IAPH World Port Sustainability Awards 2020—Valenciaporthttps://www.valenciaport.com/en/two-projects-led-by-valenciaport-win-the-iaph-world-port-sustainability-awards-2020/ es_ES
dc.description.references Ahlgren, B., Hidell, M., & Ngai, E. C.-H. (2016). Internet of Things for Smart Cities: Interoperability and Open Data. IEEE Internet Computing, 20(6), 52-56. doi:10.1109/mic.2016.124 es_ES
dc.description.references Inkinen, T., Helminen, R., & Saarikoski, J. (2019). Port Digitalization with Open Data: Challenges, Opportunities, and Integrations. Journal of Open Innovation: Technology, Market, and Complexity, 5(2), 30. doi:10.3390/joitmc5020030 es_ES
dc.description.references Analytical Report 4: Open Datain Citieshttps://www.europeandataportal.eu/sites/default/files/edp_analytical_report_n4_-_open_data_in_cities_v1.0_final.pdf es_ES
dc.description.references Analytical Report 6: Open Datain Cities 2https://www.europeandataportal.eu/sites/default/files/edp_analytical_report_n6_-_open_data_in_cities_2_-_final-clean.pdf es_ES
dc.description.references INTER-IoT Deliverableshttps://inter-iot.eu/deliverables es_ES
dc.description.references Activage Project D3.1 Report on IoT European Platformshttps://www.activageproject.eu/docs/downloads/activage_public_deliverables/ACTIVAGE_D3.1_M3_ReportonIoTEuropeanPlatforms_V1.0.pdf es_ES
dc.description.references The Open Source Platform for Our Smart Digital Future—FIWAREhttps://www.fiware.org/ es_ES
dc.description.references FIWARE Data Modelshttps://fiware-datamodels.readthedocs.io/en/latest/index.html es_ES
dc.description.references Apache Kafkahttps://kafka.apache.org/ es_ES
dc.description.references FIWARE Orion Context Brokerhttps://fiware-orion.readthedocs.io/en/master/ es_ES
dc.description.references Saborido, R., & Alba, E. (2020). Software systems from smart city vendors. Cities, 101, 102690. doi:10.1016/j.cities.2020.102690 es_ES
dc.description.references Santana, E. F. Z., Chaves, A. P., Gerosa, M. A., Kon, F., & Milojicic, D. S. (2018). Software Platforms for Smart Cities. ACM Computing Surveys, 50(6), 1-37. doi:10.1145/3124391 es_ES
dc.description.references Smart Citieshttps://www.fiware.org/community/smart-cities/ es_ES
dc.description.references Araujo, V., Mitra, K., Saguna, S., & Åhlund, C. (2019). Performance evaluation of FIWARE: A cloud-based IoT platform for smart cities. Journal of Parallel and Distributed Computing, 132, 250-261. doi:10.1016/j.jpdc.2018.12.010 es_ES
dc.description.references Ismagilova, E., Hughes, L., Dwivedi, Y. K., & Raman, K. R. (2019). Smart cities: Advances in research—An information systems perspective. International Journal of Information Management, 47, 88-100. doi:10.1016/j.ijinfomgt.2019.01.004 es_ES
dc.description.references Albino, V., Berardi, U., & Dangelico, R. M. (2015). Smart Cities: Definitions, Dimensions, Performance, and Initiatives. Journal of Urban Technology, 22(1), 3-21. doi:10.1080/10630732.2014.942092 es_ES
dc.description.references Alavi, A. H., Jiao, P., Buttlar, W. G., & Lajnef, N. (2018). Internet of Things-enabled smart cities: State-of-the-art and future trends. Measurement, 129, 589-606. doi:10.1016/j.measurement.2018.07.067 es_ES
dc.description.references Samih, H. (2019). Smart cities and internet of things. Journal of Information Technology Case and Application Research, 21(1), 3-12. doi:10.1080/15228053.2019.1587572 es_ES
dc.description.references Lanza, J., Sánchez, L., Gutiérrez, V., Galache, J., Santana, J., Sotres, P., & Muñoz, L. (2016). Smart City Services over a Future Internet Platform Based on Internet of Things and Cloud: The Smart Parking Case. Energies, 9(9), 719. doi:10.3390/en9090719 es_ES
dc.description.references A Novel Architecture for Modelling, Virtualising and Managing the Energy Consumption of Household Appliances|AIM Project|FP7|CORDIS|European Commissionhttps://cordis.europa.eu/project/id/224621 es_ES
dc.description.references Intelligent Use of Buildings’ Energy Information|IntUBE Project|FP7|CORDIS|European Commissionhttps://cordis.europa.eu/project/id/224286 es_ES
dc.description.references Scuotto, V., Ferraris, A., & Bresciani, S. (2016). Internet of Things: applications and challenges in smart cities. A case study of IBM smart city projects. Business Process Management Journal, 22(2). doi:10.1108/bpmj-05-2015-0074 es_ES
dc.description.references Molavi, A., Lim, G. J., & Race, B. (2019). A framework for building a smart port and smart port index. International Journal of Sustainable Transportation, 14(9), 686-700. doi:10.1080/15568318.2019.1610919 es_ES
dc.description.references Moustaka, V., Vakali, A., & Anthopoulos, L. G. (2019). A Systematic Review for Smart City Data Analytics. ACM Computing Surveys, 51(5), 1-41. doi:10.1145/3239566 es_ES
dc.description.references Alam, M., Dupras, J., & Messier, C. (2016). A framework towards a composite indicator for urban ecosystem services. Ecological Indicators, 60, 38-44. doi:10.1016/j.ecolind.2015.05.035 es_ES
dc.description.references PIXEL Project D5.1 Environmental Factors and Mapping to Pilotshttps://pixel-ports.eu/wp-content/uploads/2020/05/D5.1-Environmental-aspects-and-mapping-to-pilots.pdf es_ES
dc.description.references Economic Sentiment Indicator—Eurostathttps://ec.europa.eu/eurostat/web/products-datasets/product?code=teibs010 es_ES
dc.description.references Human Development Index (HDI)|Human Development Reportshttp://hdr.undp.org/en/content/human-development-index-hdi es_ES
dc.description.references COIN|Competence Centre on Composite Indicators and Scoreboardshttps://composite-indicators.jrc.ec.europa.eu/ es_ES
dc.description.references CITYkeys Projecthttp://www.citykeys-project.eu/citykeys/home es_ES
dc.description.references CITYkeys D1-4 Indicators for Smart City Projects and Smart Citieshttp://nws.eurocities.eu/MediaShell/media/CITYkeysD14Indicatorsforsmartcityprojectsandsmartcities.pdf es_ES
dc.description.references Make Healthy Choices Easier Options—Scientific Americanhttps://www.scientificamerican.com/podcast/episode/make-healthy-choices-easier-options-12-09-20/ es_ES
dc.description.references FIWARE E Interoperabilidad Para Smart Citieshttps://www.apegr.org/images/descargas/J7OctESMARTCITY/2PresentacionFIWARE.pdf es_ES
dc.description.references Chen, G., Govindan, K., & Yang, Z. (2013). Managing truck arrivals with time windows to alleviate gate congestion at container terminals. International Journal of Production Economics, 141(1), 179-188. doi:10.1016/j.ijpe.2012.03.033 es_ES
dc.description.references Patel, N., & Mukherjee, A. B. (2015). Assessment of network traffic congestion through Traffic Congestability Value (TCV): a new index. Bulletin of Geography. Socio-economic Series, 30(30), 123-134. doi:10.1515/bog-2015-0039 es_ES
dc.description.references Aimsun Live: Model Every Movement at Every Momenthttps://www.aimsun.com/aimsun-live/ es_ES
dc.description.references PTV Vissim: Traffic Simulation Softwarehttps://www.ptvgroup.com/en/solutions/products/ptv-vissim/ es_ES
dc.description.references IBM Traffic Prediction Toolhttps://researcher.watson.ibm.com/researcher/view_group_subpage.php?id=1248 es_ES
dc.description.references Veins: The Open Source Vehicular Network Simulation Frameworkhttps://veins.car2x.org/ es_ES
dc.description.references Mena-Yedra, R., Gavaldà, R., & Casas, J. (2017). Adarules: Learning rules for real-time road-traffic prediction. Transportation Research Procedia, 27, 11-18. doi:10.1016/j.trpro.2017.12.106 es_ES
dc.description.references PIXEL Projecthttps://pixel-ports.eu es_ES
dc.description.references Reference Architectural Model Industrie 4.0 (rami 4.0)https://www.plattform-i40.de/PI40/Navigation/EN/Home/home.html es_ES
dc.description.references Sethi, P., & Sarangi, S. R. (2017). Internet of Things: Architectures, Protocols, and Applications. Journal of Electrical and Computer Engineering, 2017, 1-25. doi:10.1155/2017/9324035 es_ES
dc.description.references Containers & Containerization—The Pros and Conshttps://spin.atomicobject.com/2019/05/24/containerization-pros-cons/ es_ES
dc.description.references Pyngsi Frameworkhttps://github.com/pixel-ports/pyngsi es_ES
dc.description.references PIXEL Project D6.2 PIXEL Information System Architecture and Design—Version 2https://pixel-ports.eu/wp-content/uploads/2020/05/D6.2-PIXEL-Information-System-architecture-and-design-v2.pdf es_ES
dc.description.references Apache Hivehttps://hive.apache.org/ es_ES
dc.description.references MySQLhttps://www.mysql.com/ es_ES
dc.description.references MariaDB Serverhttps://mariadb.org/ es_ES
dc.description.references Elasticsearchhttps://www.elastic.co/elasticsearch/ es_ES
dc.description.references MongoDBhttps://www.mongodb.com/ es_ES
dc.description.references Node-REDhttps://nodered.org/ es_ES
dc.description.references Swarm Mode Overview | Docker Documentationhttps://docs.docker.com/engine/swarm/ es_ES
dc.description.references Kuberneteshttps://kubernetes.io/ es_ES
dc.description.references PIXEL Project D6.3 PIXEL Data Acquisition, Information Hub and Data Representation v1https://pixel-ports.eu/wp-content/uploads/2020/05/D6.3_PIXEL-data-acquisition-information-hub-and-data-representation-v1.pdf es_ES
dc.description.references Overview of Docker Compose|Docker Documentationhttps://docs.docker.com/compose/ es_ES
dc.description.references Kibana: Explore, Visualize, Discover Datahttps://www.elastic.co/kibana es_ES
dc.description.references Grafana: The Open Observability Platformshttps://grafana.com/ es_ES
dc.description.references Vue.jshttps://vuejs.org/ es_ES
dc.description.references PIXEL Project D5.2 PEI Definition and Algorithms v1https://pixel-ports.eu/wp-content/uploads/2020/05/D5.2-PEI-Definition-and-Algorithms-v1.pdf es_ES
dc.description.references KeyPerformanceIndicator—FIWARE Data Modelshttps://fiware-datamodels.readthedocs.io/en/latest/KeyPerformanceIndicator/doc/spec/index.html es_ES
dc.description.references What Is a Container?|App Containerization|Dockerhttps://www.docker.com/resources/what-container es_ES
dc.description.references Garcia-Alonso, L., Moura, T. G. Z., & Roibas, D. (2020). The effect of weather conditions on port technical efficiency. Marine Policy, 113, 103816. doi:10.1016/j.marpol.2020.103816 es_ES
dc.description.references TrafficThess—LIVE Traffic in Thessaloniki, Greecehttps://www.trafficthess.imet.gr/ es_ES
dc.description.references National Observatory of Athens—Meteo—Stations’ Live Data and Databasehttp://stratus.meteo.noa.gr/front es_ES
dc.description.references How to Use Smart Data Models in Your Projects—FIWARE Data Modelshttps://fiware-datamodels.readthedocs.io/en/latest/howto/index.html es_ES
dc.description.references Gan, X., Fernandez, I. C., Guo, J., Wilson, M., Zhao, Y., Zhou, B., & Wu, J. (2017). When to use what: Methods for weighting and aggregating sustainability indicators. Ecological Indicators, 81, 491-502. doi:10.1016/j.ecolind.2017.05.068 es_ES
dc.description.references Wilson, M. C., & Wu, J. (2016). The problems of weak sustainability and associated indicators. International Journal of Sustainable Development & World Ecology, 24(1), 44-51. doi:10.1080/13504509.2015.1136360 es_ES
dc.description.references Kumar, S. V., & Vanajakshi, L. (2015). Short-term traffic flow prediction using seasonal ARIMA model with limited input data. European Transport Research Review, 7(3). doi:10.1007/s12544-015-0170-8 es_ES
dc.description.references Prophet: Forecastig at Scalehttps://facebook.github.io/prophet/ es_ES
dc.description.references PIXEL Project D4.4 PredictiveAlgorithms v2https://pixel-ports.eu/wp-content/uploads/2020/05/PIXEL_D4.4_Predictive-Algorithms_v2.0_Final.pdf es_ES
dc.description.references Project Jupyterhttps://jupyter.org/ es_ES
dc.description.references FIWARE Cygnushttps://fiware-cygnus.readthedocs.io/en/latest/ es_ES
dc.description.references NGSIElasticsearchSink—FIWARE Cygnushttps://fiware-cygnus.readthedocs.io/en/latest/cygnus-ngsi/flume_extensions_catalogue/ngsi_elasticsearch_sink/index.html es_ES
dc.description.references Node.jshttps://nodejs.org/ es_ES
dc.description.references Elasticsearch Node.js Client [7.x]https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/index.html es_ES
dc.description.references Apache HTTP Server Projecthttps://httpd.apache.org/ es_ES
dc.description.references Everything You Need to Know about Min-Max Normalization: A Python Tutorialhttps://towardsdatascience.com/everything-you-need-to-know-about-min-max-normalization-in-python-b79592732b79 es_ES
dc.description.references OpenStreetMaphttps://www.openstreetmap.org/ es_ES
dc.description.references Leaflet—A JavaScript Library for Interactive Mapshttps://leafletjs.com/ es_ES
dc.description.references AmCharts: JavaScript Charts & Mapshttps://www.amcharts.com/ es_ES
dc.description.references FIWARE Cataloguehttps://www.fiware.org/developers/catalogue/ es_ES
dc.description.references Findlow, S. (2019). ‘Citizenship’ and ‘Democracy Education’: identity politics or enlightened political participation? British Journal of Sociology of Education, 40(7), 1004-1013. doi:10.1080/01425692.2019.1656910 es_ES
dc.description.references Mouradian, C., Naboulsi, D., Yangui, S., Glitho, R. H., Morrow, M. J., & Polakos, P. A. (2018). A Comprehensive Survey on Fog Computing: State-of-the-Art and Research Challenges. IEEE Communications Surveys & Tutorials, 20(1), 416-464. doi:10.1109/comst.2017.2771153 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem