- -

Characterization of a preclinical PET insert in a 7 tesla MRI scanner: beyond NEMA testing

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Characterization of a preclinical PET insert in a 7 tesla MRI scanner: beyond NEMA testing

Show simple item record

Files in this item

dc.contributor.author Gsell, Willy es_ES
dc.contributor.author Molinos, Cesar es_ES
dc.contributor.author Correcher, Carlos es_ES
dc.contributor.author Belderbos, Sarah es_ES
dc.contributor.author Wouters, Jens es_ES
dc.contributor.author Junge, Sven es_ES
dc.contributor.author Heidenreich, Michael es_ES
dc.contributor.author Vande Velde, Greetje es_ES
dc.contributor.author Rezaei, Ahmadreza es_ES
dc.contributor.author Nuyts, Johan es_ES
dc.contributor.author Cawthorne, Christopher es_ES
dc.contributor.author Cleeren, Frederik es_ES
dc.contributor.author Nannan, Lise es_ES
dc.contributor.author Deroose, Christophe M. es_ES
dc.contributor.author Himmelreich, Uwe es_ES
dc.contributor.author González Martínez, Antonio Javier es_ES
dc.date.accessioned 2021-05-27T03:33:16Z
dc.date.available 2021-05-27T03:33:16Z
dc.date.issued 2020-12-21 es_ES
dc.identifier.issn 0031-9155 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166819
dc.description.abstract [EN] This study evaluates the performance of the Bruker positron emission tomograph (PET) insert combined with a BioSpec 70/30 USR magnetic resonance imaging (MRI) scanner using the manufacturer acceptance protocol and the NEMA NU 4-2008 for small animal PET. The PET insert is made of 3 rings of 8 monolithic LYSO crystals (50 x 50 x 10 mm(3)) coupled to silicon photomultipliers (SiPM) arrays, conferring an axial and transaxial FOV of 15 cm and 8 cm. The MRI performance was evaluated with and without the insert for the following radiofrequency noise, magnetic field homogeneity and image quality. For the PET performance, we extended the NEMA protocol featuring system sensitivity, count rates, spatial resolution and image quality to homogeneity and accuracy for quantification using several MRI sequences (RARE, FLASH, EPI and UTE). The PET insert does not show any adverse effect on the MRI performances. The MR field homogeneity is well preserved (Diameter Spherical Volume, for 20 mm of 1.98 +/- 4.78 without and -0.96 +/- 5.16 Hz with the PET insert). The PET insert has no major effect on the radiofrequency field. The signal-to-noise ratio measurements also do not show major differences. Image ghosting is well within the manufacturer specifications (<2.5%) and no RF noise is visible. Maximum sensitivity of the PET insert is 11.0% at the center of the FOV even with simultaneous acquisition of EPI and RARE. PET MLEM resolution is 0.87 mm (FWHM) at 5 mm off-center of the FOV and 0.97 mm at 25 mm radial offset. The peaks for true/noise equivalent count rates are 410/240 and 628/486 kcps for the rat and mouse phantoms, and are reached at 30.34/22.85 and 27.94/22.58 MBq. PET image quality is minimally altered by the different MRI sequences. The Bruker PET insert shows no adverse effect on the MRI performance and demonstrated a high sensitivity, sub-millimeter resolution and good image quality even during simultaneous MRI acquisition. es_ES
dc.description.sponsorship We acknowledge the KU Leuven core facility, Molecular Small Animal Imaging Center (MoSAIC), for their support with obtaining scientific data presented in this paper. This work was supported by Stichting tegen Kanker (2015-145, Christophe M. Deroose) and Hercules foundation (AKUL/13/029, Uwe Himmelreich) for the purchase of the PET and MRI equipment respectively. The work was supported by the following funding organizations: European Commission for the PANA project (H2020-NMP-2015-two-stage, grant 686009) and the European ERA-NET project 'CryptoView' (3rd call of the FP7 program Infect-ERA). es_ES
dc.language Inglés es_ES
dc.publisher IOP Publishing es_ES
dc.relation.ispartof Physics in Medicine and Biology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Preclinical es_ES
dc.subject PET-insert es_ES
dc.subject MRI es_ES
dc.subject Performances es_ES
dc.subject Imaging es_ES
dc.title Characterization of a preclinical PET insert in a 7 tesla MRI scanner: beyond NEMA testing es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/1361-6560/aba08c es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/321529/EU/Coordination of European funding for infectious diseases research/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Stichting Tegen Kanker//2015-145/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/686009/EU/PROMOTING ACTIVE AGEING: FUNCTIONAL NANOSTRUCTURES FOR ALZHEIMER’S DISEASE AT ULTRA-EARLY STAGES./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Hercules Foundation//AKUL%2F13%2F029/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.description.bibliographicCitation Gsell, W.; Molinos, C.; Correcher, C.; Belderbos, S.; Wouters, J.; Junge, S.; Heidenreich, M.... (2020). Characterization of a preclinical PET insert in a 7 tesla MRI scanner: beyond NEMA testing. Physics in Medicine and Biology. 65(24):1-16. https://doi.org/10.1088/1361-6560/aba08c es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1088/1361-6560/aba08c es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 65 es_ES
dc.description.issue 24 es_ES
dc.identifier.pmid 32590380 es_ES
dc.relation.pasarela S\431263 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Hercules Foundation es_ES
dc.contributor.funder Stichting Tegen Kanker es_ES
dc.description.references Balezeau, F., Eliat, P.-A., Cayamo, A. B., & Saint-Jalmes, H. (2011). Mapping of low flip angles in magnetic resonance. Physics in Medicine and Biology, 56(20), 6635-6647. doi:10.1088/0031-9155/56/20/008 es_ES
dc.description.references Benlloch, J. M., González, A. J., Pani, R., Preziosi, E., Jackson, C., Murphy, J., … Schwaiger, M. (2018). The MINDVIEW project: First results. European Psychiatry, 50, 21-27. doi:10.1016/j.eurpsy.2018.01.002 es_ES
dc.description.references Cal-Gonzalez, J., Rausch, I., Shiyam Sundar, L. K., Lassen, M. L., Muzik, O., Moser, E., … Beyer, T. (2018). Hybrid Imaging: Instrumentation and Data Processing. Frontiers in Physics, 6. doi:10.3389/fphy.2018.00047 es_ES
dc.description.references Clark, D. P., & Badea, C. T. (2014). Micro-CT of rodents: State-of-the-art and future perspectives. Physica Medica, 30(6), 619-634. doi:10.1016/j.ejmp.2014.05.011 es_ES
dc.description.references Drzezga, A., Souvatzoglou, M., Eiber, M., Beer, A. J., Fürst, S., Martinez-Möller, A., … Schwaiger, M. (2012). First Clinical Experience with Integrated Whole-Body PET/MR: Comparison to PET/CT in Patients with Oncologic Diagnoses. Journal of Nuclear Medicine, 53(6), 845-855. doi:10.2967/jnumed.111.098608 es_ES
dc.description.references Gonzalez, A. J., Aguilar, A., Conde, P., Hernandez, L., Moliner, L., Vidal, L. F., … Benlloch, J. M. (2016). A PET Design Based on SiPM and Monolithic LYSO Crystals: Performance Evaluation. IEEE Transactions on Nuclear Science, 63(5), 2471-2477. doi:10.1109/tns.2016.2522179 es_ES
dc.description.references Gonzalez, A. J., Pincay, E. J., Canizares, G., Lamprou, E., Sanchez, S., Catret, J. V., … Correcher, C. (2019). Initial Results of the MINDView PET Insert Inside the 3T mMR. IEEE Transactions on Radiation and Plasma Medical Sciences, 3(3), 343-351. doi:10.1109/trpms.2018.2866899 es_ES
dc.description.references Grant, A. M., Lee, B. J., Chang, C.-M., & Levin, C. S. (2017). Simultaneous PET/MR imaging with a radio frequency-penetrable PET insert. Medical Physics, 44(1), 112-120. doi:10.1002/mp.12031 es_ES
dc.description.references Habte, F., Ren, G., Doyle, T. C., Liu, H., Cheng, Z., & Paik, D. S. (2013). Impact of a Multiple Mice Holder on Quantitation of High-Throughput MicroPET Imaging With and Without Ct Attenuation Correction. Molecular Imaging and Biology, 15(5), 569-575. doi:10.1007/s11307-012-0602-y es_ES
dc.description.references Hammer, B. E., Christensen, N. L., & Heil, B. G. (1994). Use of a magnetic field to increase the spatial resolution of positron emission tomography. Medical Physics, 21(12), 1917-1920. doi:10.1118/1.597178 es_ES
dc.description.references Jadvar, H., & Colletti, P. M. (2014). Competitive advantage of PET/MRI. European Journal of Radiology, 83(1), 84-94. doi:10.1016/j.ejrad.2013.05.028 es_ES
dc.description.references Judenhofer, M. S., Catana, C., Swann, B. K., Siegel, S. B., Jung, W.-I., Nutt, R. E., … Pichler, B. J. (2007). PET/MR Images Acquired with a Compact MR-compatible PET Detector in a 7-T Magnet. Radiology, 244(3), 807-814. doi:10.1148/radiol.2443061756 es_ES
dc.description.references Kinahan, P. E., Townsend, D. W., Beyer, T., & Sashin, D. (1998). Attenuation correction for a combined 3D PET/CT scanner. Medical Physics, 25(10), 2046-2053. doi:10.1118/1.598392 es_ES
dc.description.references Ko, G. B., Yoon, H. S., Kim, K. Y., Lee, M. S., Yang, B. Y., Jeong, J. M., … Lee, J. S. (2016). Simultaneous Multiparametric PET/MRI with Silicon Photomultiplier PET and Ultra-High-Field MRI for Small-Animal Imaging. Journal of Nuclear Medicine, 57(8), 1309-1315. doi:10.2967/jnumed.115.170019 es_ES
dc.description.references Lee, B. J., Grant, A. M., Chang, C.-M., Watkins, R. D., Glover, G. H., & Levin, C. S. (2018). MR Performance in the Presence of a Radio Frequency-Penetrable Positron Emission Tomography (PET) Insert for Simultaneous PET/MRI. IEEE Transactions on Medical Imaging, 37(9), 2060-2069. doi:10.1109/tmi.2018.2815620 es_ES
dc.description.references Loening, A. M., & Gambhir, S. S. (2003). AMIDE: A Free Software Tool for Multimodality Medical Image Analysis. Molecular Imaging, 2(3), 131-137. doi:10.1162/153535003322556877 es_ES
dc.description.references Mannheim, J. G., Schmid, A. M., Schwenck, J., Katiyar, P., Herfert, K., Pichler, B. J., & Disselhorst, J. A. (2018). PET/MRI Hybrid Systems. Seminars in Nuclear Medicine, 48(4), 332-347. doi:10.1053/j.semnuclmed.2018.02.011 es_ES
dc.description.references Maramraju, S. H., Smith, S. D., Junnarkar, S. S., Schulz, D., Stoll, S., Ravindranath, B., … Schlyer, D. J. (2011). Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI. Physics in Medicine and Biology, 56(8), 2459-2480. doi:10.1088/0031-9155/56/8/009 es_ES
dc.description.references Molinos, C., Sasser, T., Salmon, P., Gsell, W., Viertl, D., Massey, J. C., … Heidenreich, M. (2019). Low-Dose Imaging in a New Preclinical Total-Body PET/CT Scanner. Frontiers in Medicine, 6. doi:10.3389/fmed.2019.00088 es_ES
dc.description.references Nagy, K., Tóth, M., Major, P., Patay, G., Egri, G., Häggkvist, J., … Gulyás, B. (2013). Performance Evaluation of the Small-Animal nanoScan PET/MRI System. Journal of Nuclear Medicine, 54(10), 1825-1832. doi:10.2967/jnumed.112.119065 es_ES
dc.description.references Nanni, C., & Torigian, D. A. (2008). Applications of Small Animal Imaging with PET, PET/CT, and PET/MR Imaging. PET Clinics, 3(3), 243-250. doi:10.1016/j.cpet.2009.01.002 es_ES
dc.description.references Omidvari, N., Cabello, J., Topping, G., Schneider, F. R., Paul, S., Schwaiger, M., & Ziegler, S. I. (2017). PET performance evaluation of MADPET4: a small animal PET insert for a 7 T MRI scanner. Physics in Medicine & Biology, 62(22), 8671-8692. doi:10.1088/1361-6560/aa910d es_ES
dc.description.references Omidvari, N., Topping, G., Cabello, J., Paul, S., Schwaiger, M., & Ziegler, S. I. (2018). MR-compatibility assessment of MADPET4: a study of interferences between an SiPM-based PET insert and a 7 T MRI system. Physics in Medicine & Biology, 63(9), 095002. doi:10.1088/1361-6560/aab9d1 es_ES
dc.description.references Raylman, R. R., Majewski, S., Lemieux, S. K., Velan, S. S., Kross, B., Popov, V., … Marano, G. D. (2006). Simultaneous MRI and PET imaging of a rat brain. Physics in Medicine and Biology, 51(24), 6371-6379. doi:10.1088/0031-9155/51/24/006 es_ES
dc.description.references Roncali, E., & Cherry, S. R. (2011). Application of Silicon Photomultipliers to Positron Emission Tomography. Annals of Biomedical Engineering, 39(4), 1358-1377. doi:10.1007/s10439-011-0266-9 es_ES
dc.description.references Schug, D., Lerche, C., Weissler, B., Gebhardt, P., Goldschmidt, B., Wehner, J., … Schulz, V. (2016). Initial PET performance evaluation of a preclinical insert for PET/MRI with digital SiPM technology. Physics in Medicine and Biology, 61(7), 2851-2878. doi:10.1088/0031-9155/61/7/2851 es_ES
dc.description.references Shao, Y., Cherry, S. R., Farahani, K., Meadors, K., Siegel, S., Silverman, R. W., & Marsden, P. K. (1997). Simultaneous PET and MR imaging. Physics in Medicine and Biology, 42(10), 1965-1970. doi:10.1088/0031-9155/42/10/010 es_ES
dc.description.references Steinert, H. C., & von Schulthess, G. K. (2002). Initial clinical experience using a new integrated in-line PET/CT system. The British Journal of Radiology, 75(suppl_9), S36-S38. doi:10.1259/bjr.75.suppl_9.750036 es_ES
dc.description.references Stortz, G., Thiessen, J. D., Bishop, D., Khan, M. S., Kozlowski, P., Retière, F., … Sossi, V. (2017). Performance of a PET Insert for High-Resolution Small-Animal PET/MRI at 7 Tesla. Journal of Nuclear Medicine, 59(3), 536-542. doi:10.2967/jnumed.116.187666 es_ES
dc.description.references Townsend, D. W. (2008). Combined Positron Emission Tomography–Computed Tomography: The Historical Perspective. Seminars in Ultrasound, CT and MRI, 29(4), 232-235. doi:10.1053/j.sult.2008.05.006 es_ES
dc.description.references Vandenberghe, S., & Marsden, P. K. (2015). PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging. Physics in Medicine and Biology, 60(4), R115-R154. doi:10.1088/0031-9155/60/4/r115 es_ES
dc.description.references Vaquero, J. J., & Kinahan, P. (2015). Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems. Annual Review of Biomedical Engineering, 17(1), 385-414. doi:10.1146/annurev-bioeng-071114-040723 es_ES
dc.description.references Von Schulthess, G. K., & Schlemmer, H.-P. W. (2008). A look ahead: PET/MR versus PET/CT. European Journal of Nuclear Medicine and Molecular Imaging, 36(S1), 3-9. doi:10.1007/s00259-008-0940-9 es_ES
dc.description.references Wehner, J., Weissler, B., Dueppenbecker, P. M., Gebhardt, P., Goldschmidt, B., Schug, D., … Schulz, V. (2015). MR-compatibility assessment of the first preclinical PET-MRI insert equipped with digital silicon photomultipliers. Physics in Medicine and Biology, 60(6), 2231-2255. doi:10.1088/0031-9155/60/6/2231 es_ES
dc.description.references Wehrl, H. F., Judenhofer, M. S., Thielscher, A., Martirosian, P., Schick, F., & Pichler, B. J. (2010). Assessment of MR compatibility of a PET insert developed for simultaneous multiparametric PET/MR imaging on an animal system operating at 7 T. Magnetic Resonance in Medicine, 65(1), 269-279. doi:10.1002/mrm.22591 es_ES
dc.description.references Yamamoto, S., Imaizumi, M., Kanai, Y., Tatsumi, M., Aoki, M., Sugiyama, E., … Hatazawa, J. (2010). Design and performance from an integrated PET/MRI system for small animals. Annals of Nuclear Medicine, 24(2), 89-98. doi:10.1007/s12149-009-0333-6 es_ES
dc.description.references Yamamoto, S., Watabe, T., Watabe, H., Aoki, M., Sugiyama, E., Imaizumi, M., … Hatazawa, J. (2011). Simultaneous imaging using Si-PM-based PET and MRI for development of an integrated PET/MRI system. Physics in Medicine and Biology, 57(2), N1-N13. doi:10.1088/0031-9155/57/2/n1 es_ES
dc.description.references Zaidi, H., Montandon, M.-L., & Alavi, A. (2008). The Clinical Role of Fusion Imaging Using PET, CT, and MR Imaging. PET Clinics, 3(3), 275-291. doi:10.1016/j.cpet.2009.03.002 es_ES


This item appears in the following Collection(s)

Show simple item record