- -

Design and Evaluation of a Solo-Resident Smart Home Testbed for Mobility Pattern Monitoring and Behavioural Assessment

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Design and Evaluation of a Solo-Resident Smart Home Testbed for Mobility Pattern Monitoring and Behavioural Assessment

Show full item record

Shirali, M.; Bayo-Monton, JL.; Fernández Llatas, C.; Ghassemian, M.; Traver Salcedo, V. (2020). Design and Evaluation of a Solo-Resident Smart Home Testbed for Mobility Pattern Monitoring and Behavioural Assessment. Sensors. 20(24):1-25. https://doi.org/10.3390/s20247167

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166821

Files in this item

Item Metadata

Title: Design and Evaluation of a Solo-Resident Smart Home Testbed for Mobility Pattern Monitoring and Behavioural Assessment
Author: Shirali, Mohsen Bayo-Monton, Jose Luis Fernández Llatas, Carlos Ghassemian, Mona Traver Salcedo, Vicente
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Issued date:
Abstract:
[EN] Aging population increase demands for solutions to help the solo-resident elderly live independently. Unobtrusive data collection in a smart home environment can monitor and assess elderly residents' health state based ...[+]
Subjects: Smart home , Testbed , Process mining , Human mobility pattern monitoring , Behaviour assessment
Copyrigths: Reconocimiento (by)
Source:
Sensors. (eissn: 1424-8220 )
DOI: 10.3390/s20247167
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/s20247167
Type: Artículo

References

Lutz, W., Sanderson, W., & Scherbov, S. (2001). The end of world population growth. Nature, 412(6846), 543-545. doi:10.1038/35087589

United Nations, Department of Economic and Social Affairs, World Population Prospoects 2019 https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf

Atzori, L., Iera, A., & Morabito, G. (2017). Understanding the Internet of Things: definition, potentials, and societal role of a fast evolving paradigm. Ad Hoc Networks, 56, 122-140. doi:10.1016/j.adhoc.2016.12.004 [+]
Lutz, W., Sanderson, W., & Scherbov, S. (2001). The end of world population growth. Nature, 412(6846), 543-545. doi:10.1038/35087589

United Nations, Department of Economic and Social Affairs, World Population Prospoects 2019 https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf

Atzori, L., Iera, A., & Morabito, G. (2017). Understanding the Internet of Things: definition, potentials, and societal role of a fast evolving paradigm. Ad Hoc Networks, 56, 122-140. doi:10.1016/j.adhoc.2016.12.004

Cook, D. J., Duncan, G., Sprint, G., & Fritz, R. L. (2018). Using Smart City Technology to Make Healthcare Smarter. Proceedings of the IEEE, 106(4), 708-722. doi:10.1109/jproc.2017.2787688

Cook, D. J., & Krishnan, N. (2014). Mining the home environment. Journal of Intelligent Information Systems, 43(3), 503-519. doi:10.1007/s10844-014-0341-4

Alaa, M., Zaidan, A. A., Zaidan, B. B., Talal, M., & Kiah, M. L. M. (2017). A review of smart home applications based on Internet of Things. Journal of Network and Computer Applications, 97, 48-65. doi:10.1016/j.jnca.2017.08.017

Palipana, S., Pietropaoli, B., & Pesch, D. (2017). Recent advances in RF-based passive device-free localisation for indoor applications. Ad Hoc Networks, 64, 80-98. doi:10.1016/j.adhoc.2017.06.007

Chen, G., Wang, A., Zhao, S., Liu, L., & Chang, C.-Y. (2017). Latent feature learning for activity recognition using simple sensors in smart homes. Multimedia Tools and Applications, 77(12), 15201-15219. doi:10.1007/s11042-017-5100-4

Tewell, J., O’Sullivan, D., Maiden, N., Lockerbie, J., & Stumpf, S. (2019). Monitoring meaningful activities using small low-cost devices in a smart home. Personal and Ubiquitous Computing, 23(2), 339-357. doi:10.1007/s00779-019-01223-2

Krishnan, N. C., & Cook, D. J. (2014). Activity recognition on streaming sensor data. Pervasive and Mobile Computing, 10, 138-154. doi:10.1016/j.pmcj.2012.07.003

Wang, A., Chen, G., Wu, X., Liu, L., An, N., & Chang, C.-Y. (2018). Towards Human Activity Recognition: A Hierarchical Feature Selection Framework. Sensors, 18(11), 3629. doi:10.3390/s18113629

Liu, Y., Wang, X., Zhai, Z., Chen, R., Zhang, B., & Jiang, Y. (2019). Timely daily activity recognition from headmost sensor events. ISA Transactions, 94, 379-390. doi:10.1016/j.isatra.2019.04.026

Viani, F., Robol, F., Polo, A., Rocca, P., Oliveri, G., & Massa, A. (2013). Wireless Architectures for Heterogeneous Sensing in Smart Home Applications: Concepts and Real Implementation. Proceedings of the IEEE, 101(11), 2381-2396. doi:10.1109/jproc.2013.2266858

Rashidi, P., Cook, D. J., Holder, L. B., & Schmitter-Edgecombe, M. (2011). Discovering Activities to Recognize and Track in a Smart Environment. IEEE Transactions on Knowledge and Data Engineering, 23(4), 527-539. doi:10.1109/tkde.2010.148

Samsung SmartThings http://www.smartthings.com/

Apple HomeKit https://www.apple.com/ios/home/

Vera3 Advanced Smart Home Controller http://getvera.com/controllers/vera3/

AndroidThings https://developer.android.com/things/index.html

TeleAlarm Assisted Living http://www.telealarm.com/en/products/assisted-living

Birdie—Connected Sensors around the Home https://birdie.care/

AllJoyn Framework https://identity.allseenalliance.org/developers

Cook, D. J., Crandall, A. S., Thomas, B. L., & Krishnan, N. C. (2013). CASAS: A Smart Home in a Box. Computer, 46(7), 62-69. doi:10.1109/mc.2012.328

Skubic, M., Alexander, G., Popescu, M., Rantz, M., & Keller, J. (2009). A smart home application to eldercare: Current status and lessons learned. Technology and Health Care, 17(3), 183-201. doi:10.3233/thc-2009-0551

Helal, S., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., & Jansen, E. (2005). The Gator Tech Smart House: a programmable pervasive space. Computer, 38(3), 50-60. doi:10.1109/mc.2005.107

Doctor, F., Hagras, H., & Callaghan, V. (2005). A Fuzzy Embedded Agent-Based Approach for Realizing Ambient Intelligence in Intelligent Inhabited Environments. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 35(1), 55-65. doi:10.1109/tsmca.2004.838488

Abowd, G. D., & Mynatt, E. D. (2005). Designing for the Human Experience in Smart Environments. Smart Environments, 151-174. doi:10.1002/047168659x.ch7

Technology Integrated Health Management (TIHM) Project https://www.sabp.nhs.uk/tihm

Ahvar, E., Daneshgar-Moghaddam, N., Ortiz, A. M., Lee, G. M., & Crespi, N. (2016). On analyzing user location discovery methods in smart homes: A taxonomy and survey. Journal of Network and Computer Applications, 76, 75-86. doi:10.1016/j.jnca.2016.09.012

Milenkovic, M., & Amft, O. (2013). Recognizing Energy-related Activities Using Sensors Commonly Installed in Office Buildings. Procedia Computer Science, 19, 669-677. doi:10.1016/j.procs.2013.06.089

Fernandez-Llatas, C., Lizondo, A., Monton, E., Benedi, J.-M., & Traver, V. (2015). Process Mining Methodology for Health Process Tracking Using Real-Time Indoor Location Systems. Sensors, 15(12), 29821-29840. doi:10.3390/s151229769

Dogan, O., Bayo-Monton, J.-L., Fernandez-Llatas, C., & Oztaysi, B. (2019). Analyzing of Gender Behaviors from Paths Using Process Mining: A Shopping Mall Application. Sensors, 19(3), 557. doi:10.3390/s19030557

Schmitter-Edgecombe, M., & Cook, D. J. (2009). Assessing the Quality of Activities in a Smart Environment. Methods of Information in Medicine, 48(05), 480-485. doi:10.3414/me0592

Alberdi Aramendi, A., Weakley, A., Aztiria Goenaga, A., Schmitter-Edgecombe, M., & Cook, D. J. (2018). Automatic assessment of functional health decline in older adults based on smart home data. Journal of Biomedical Informatics, 81, 119-130. doi:10.1016/j.jbi.2018.03.009

Dawadi, P. N., Cook, D. J., & Schmitter-Edgecombe, M. (2016). Automated Cognitive Health Assessment From Smart Home-Based Behavior Data. IEEE Journal of Biomedical and Health Informatics, 20(4), 1188-1194. doi:10.1109/jbhi.2015.2445754

Sprint, G., Cook, D. J., & Schmitter-Edgecombe, M. (2017). Unsupervised Detection and Analysis of Changes in Everyday Physical Activity Data. Intelligent Systems Reference Library, 97-122. doi:10.1007/978-3-319-67513-8_6

Taheri Tanjanai, P., Moradinazar, M., & Najafi, F. (2016). Prevalence of depression and related social and physical factors amongst the Iranian elderly population in 2012. Geriatrics & Gerontology International, 17(1), 126-131. doi:10.1111/ggi.12680

Zhao, Z., Zhang, M., Yang, C., Fang, J., & Huang, G. Q. (2018). Distributed and collaborative proactive tandem location tracking of vehicle products for warehouse operations. Computers & Industrial Engineering, 125, 637-648. doi:10.1016/j.cie.2018.05.005

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record