- -

Spectral transmission of solar radiation by plastic and glass materials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Spectral transmission of solar radiation by plastic and glass materials

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Serrano, María-Antonia es_ES
dc.contributor.author Moreno, J.C. es_ES
dc.date.accessioned 2021-05-27T03:34:02Z
dc.date.available 2021-05-27T03:34:02Z
dc.date.issued 2020-07 es_ES
dc.identifier.issn 1011-1344 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166827
dc.description.abstract [EN] It is well known that excessive exposure to solar ultraviolet (UV) radiation can have serious adverse effects. Many everyday materials influence the UV radiation received by humans, for example, those used in construction and on the exterior of buildings such as plastics and glass can reduce the UV exposure of persons exposed to solar radiation. In this paper we analyse the spectral transmission of solar radiation of widely used materials using the transmittance parameter. The measurements were performed on clear days, at 8 h and 12 solar hours, in July 2018 (five days) and in January 2019 (three days). The spectral transmittances of these materials and the integrated transmittances in the UVB from 300 nm, UVA, visible (VIS) and near infrared ranges (NIR) were calculated. In summer in the UVB range from 300 nm methacrylate and smoked glass have the highest transmittance values (56%) and polycarbonate present the lowest (30%). In the VIS and NIR ranges methacrylate (95%) and smoked glass (80%) have the highest transmittances and polycarbonate the lowest (45%). In general the 8 h transmittances are higher than those at 12 h and are also higher in winter than summer. For two biological functions (erythemal and DNA-damage) and for the UVB range from 300 nm, the transmittance for most materials (except fibreglass) is in the range 6-14%. The exposure times obtained show that erythemal damage could occur after long exposure to solar radiation through the materials studied, information which should be made available to the general public. es_ES
dc.description.sponsorship The authors wish to thank the Generalitat Valenciana for providing us with access to weather data. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Photochemistry and Photobiology B Biology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Spectral transmittance es_ES
dc.subject UVA transmittance es_ES
dc.subject UVB transmittance es_ES
dc.subject VIS transmittance es_ES
dc.subject NIR transmittance es_ES
dc.subject Erythemal transmittance es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Spectral transmission of solar radiation by plastic and glass materials es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jphotobiol.2020.111894 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Serrano, M.; Moreno, J. (2020). Spectral transmission of solar radiation by plastic and glass materials. Journal of Photochemistry and Photobiology B Biology. 208:1-11. https://doi.org/10.1016/j.jphotobiol.2020.111894 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jphotobiol.2020.111894 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 208 es_ES
dc.identifier.pmid 32450467 es_ES
dc.relation.pasarela S\422153 es_ES
dc.description.references Sklar, L. R., Almutawa, F., Lim, H. W., & Hamzavi, I. (2013). Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: a review. Photochem. Photobiol. Sci., 12(1), 54-64. doi:10.1039/c2pp25152c es_ES
dc.description.references Greinert, R., de Vries, E., Erdmann, F., Espina, C., Auvinen, A., Kesminiene, A., & Schüz, J. (2015). European Code against Cancer 4th Edition: Ultraviolet radiation and cancer. Cancer Epidemiology, 39, S75-S83. doi:10.1016/j.canep.2014.12.014 es_ES
dc.description.references Bais A, Topaloglou C, Kazadtzis S, et al. Report of the LAP/COST/WMO Intercomparison of Erythemal Radiometers, Thessaloniki, Greece, 13–23 September 1999, 2001 WMO-GAW report No. 141 (WHO TD No. 1051) Geneva. es_ES
dc.description.references Lucas, R. M., Yazar, S., Young, A. R., Norval, M., de Gruijl, F. R., Takizawa, Y., … Neale, R. E. (2019). Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate. Photochemical & Photobiological Sciences, 18(3), 641-680. doi:10.1039/c8pp90060d es_ES
dc.description.references Parisi, A. V., & Wong, J. C. F. (1998). Quantitative evaluation of the personal erythemal ultraviolet exposure in a car. Photodermatology, Photoimmunology & Photomedicine, 14(1), 12-16. doi:10.1111/j.1600-0781.1998.tb00003.x es_ES
dc.description.references Kimlin, M. G., & Parisi, A. V. (1999). Ultraviolet radiation penetrating vehicle glass: a field based comparative study. Physics in Medicine and Biology, 44(4), 917-926. doi:10.1088/0031-9155/44/4/008 es_ES
dc.description.references M., K., A., P., B., C., & D., T. (2002). Comparison of the solar spectral ultraviolet irradiance in motor vehicles with windows in an open and closed position. International Journal of Biometeorology, 46(3), 150-156. doi:10.1007/s00484-002-0131-5 es_ES
dc.description.references Tuchinda, C., Srivannaboon, S., & Lim, H. W. (2006). Photoprotection by window glass, automobile glass, and sunglasses. Journal of the American Academy of Dermatology, 54(5), 845-854. doi:10.1016/j.jaad.2005.11.1082 es_ES
dc.description.references Cadet, J., Grand, A., & Douki, T. (2014). Solar UV Radiation-Induced DNA Bipyrimidine Photoproducts: Formation and Mechanistic Insights. Topics in Current Chemistry, 249-275. doi:10.1007/128_2014_553 es_ES
dc.description.references Mouret, S., Forestier, A., & Douki, T. (2012). The specificity of UVA-induced DNA damage in human melanocytes. Photochem. Photobiol. Sci., 11(1), 155-162. doi:10.1039/c1pp05185g es_ES
dc.description.references Sage, E., Girard, P.-M., & Francesconi, S. (2012). Unravelling UVA-induced mutagenesis. Photochem. Photobiol. Sci., 11(1), 74-80. doi:10.1039/c1pp05219e es_ES
dc.description.references Battie, C., Jitsukawa, S., Bernerd, F., Del Bino, S., Marionnet, C., & Verschoore, M. (2014). New insights in photoaging, UVA induced damage and skin types. Experimental Dermatology, 23, 7-12. doi:10.1111/exd.12388 es_ES
dc.description.references Parisi, A. V., & Turnbull, D. J. (2014). Shade Provision for UV Minimization: A Review. Photochemistry and Photobiology, 90(3), 479-490. doi:10.1111/php.12237 es_ES
dc.description.references Gies, P., Makin, J., Dobbinson, S., Javorniczky, J., Henderson, S., Guilfoyle, R., & Lock, J. (2013). Shade Provision for Toddlers at Swimming Pools in Melbourne. Photochemistry and Photobiology, 89(4), 968-973. doi:10.1111/php.12078 es_ES
dc.description.references Li, D., Li, Z., Zheng, Y., Liu, C., & Lu, L. (2015). Optical performance of single and double glazing units in the wavelength 337–900 nm. Solar Energy, 122, 1091-1099. doi:10.1016/j.solener.2015.10.028 es_ES
dc.description.references Liu, C., Wu, Y., Zhu, Y., Li, D., & Ma, L. (2018). Experimental investigation of optical and thermal performance of a PCM-glazed unit for building applications. Energy and Buildings, 158, 794-800. doi:10.1016/j.enbuild.2017.10.069 es_ES
dc.description.references Milon, A., Sottas, P.-E., Bulliard, J.-L., & Vernez, D. (2006). Effective exposure to solar UV in building workers: influence of local and individual factors. Journal of Exposure Science & Environmental Epidemiology, 17(1), 58-68. doi:10.1038/sj.jes.7500521 es_ES
dc.description.references Gies, P., & Wright, J. (2003). Measured Solar Ultraviolet Radiation Exposures of Outdoor Workers in Queensland in the Building and Construction Industry¶. Photochemistry and Photobiology, 78(4), 342. doi:10.1562/0031-8655(2003)078<0342:msureo>2.0.co;2 es_ES
dc.description.references Håkansson, N., Floderus, B., Gustavsson, P., Feychting, M., & Hallin, N. (2001). Occupational Sunlight Exposure and Cancer Incidence among Swedish Construction Workers. Epidemiology, 12(5), 552-557. doi:10.1097/00001648-200109000-00015 es_ES
dc.description.references Turner, J., & Parisi, A. V. (2018). Investigation of correlation of broadband UVA reflection to broadband visible reflection for a variety of surfaces in the built environment. Building and Environment, 136, 259-268. doi:10.1016/j.buildenv.2018.03.062 es_ES
dc.description.references Setlow, R. B. (1974). The Wavelengths in Sunlight Effective in Producing Skin Cancer: A Theoretical Analysis. Proceedings of the National Academy of Sciences, 71(9), 3363-3366. doi:10.1073/pnas.71.9.3363 es_ES
dc.description.references MacLaughlin, J. A., Anderson, R. R., & Holick, M. F. (1982). Spectral Character of Sunlight Modulates Photosynthesis of Previtamin D 3 and Its Photoisomers in Human Skin. Science, 216(4549), 1001-1003. doi:10.1126/science.6281884 es_ES
dc.description.references Flint, S. D., & Caldwell, M. M. (2003). A biological spectral weighting function for ozone depletion research with higher plants. Physiologia Plantarum, 117(1), 137-144. doi:10.1034/j.1399-3054.2003.1170117.x es_ES
dc.description.references Flint, S. D., & Caldwell, M. M. (2003). Field testing of UV biological spectral weighting functions for higher plants. Physiologia Plantarum, 117(1), 145-153. doi:10.1034/j.1399-3054.2003.1170118.x es_ES
dc.description.references Holick, M. F. (2004). Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis. The American Journal of Clinical Nutrition, 79(3), 362-371. doi:10.1093/ajcn/79.3.362 es_ES
dc.description.references Holick, M. F. (2005). The Vitamin D Epidemic and its Health Consequences. The Journal of Nutrition, 135(11), 2739S-2748S. doi:10.1093/jn/135.11.2739s es_ES
dc.description.references Holick, M. F. (2007). Vitamin D Deficiency. New England Journal of Medicine, 357(3), 266-281. doi:10.1056/nejmra070553 es_ES
dc.description.references Holick, M. F., Chen, T. C., Lu, Z., & Sauter, E. (2007). Vitamin D and Skin Physiology: A D-Lightful Story. Journal of Bone and Mineral Research, 22(S2), V28-V33. doi:10.1359/jbmr.07s211 es_ES
dc.description.references Engelsen, O. (2010). The Relationship between Ultraviolet Radiation Exposure and Vitamin D Status. Nutrients, 2(5), 482-495. doi:10.3390/nu2050482 es_ES
dc.description.references Hossein-nezhad, A., & Holick, M. F. (2013). Vitamin D for Health: A Global Perspective. Mayo Clinic Proceedings, 88(7), 720-755. doi:10.1016/j.mayocp.2013.05.011 es_ES
dc.description.references Pludowski, P., Holick, M. F., Pilz, S., Wagner, C. L., Hollis, B. W., Grant, W. B., … Soni, M. (2013). Vitamin D effects on musculoskeletal health, immunity, autoimmunity, cardiovascular disease, cancer, fertility, pregnancy, dementia and mortality—A review of recent evidence. Autoimmunity Reviews, 12(10), 976-989. doi:10.1016/j.autrev.2013.02.004 es_ES
dc.description.references Garland, C. F., Kim, J. J., Mohr, S. B., Gorham, E. D., Grant, W. B., Giovannucci, E. L., … Heaney, R. P. (2014). Meta-analysis of All-Cause Mortality According to Serum 25-Hydroxyvitamin D. American Journal of Public Health, 104(8), e43-e50. doi:10.2105/ajph.2014.302034 es_ES
dc.description.references McDonnell, S. L., Baggerly, C., French, C. B., Baggerly, L. L., Garland, C. F., Gorham, E. D., … Heaney, R. P. (2016). Serum 25-Hydroxyvitamin D Concentrations ≥40 ng/ml Are Associated with >65% Lower Cancer Risk: Pooled Analysis of Randomized Trial and Prospective Cohort Study. PLOS ONE, 11(4), e0152441. doi:10.1371/journal.pone.0152441 es_ES
dc.description.references Bogh, M. K. B., Schmedes, A. V., Philipsen, P. A., Thieden, E., & Wulf, H. C. (2010). Vitamin D production depends on ultraviolet-B dose but not on dose rate: A randomized controlled trial. Experimental Dermatology, 20(1), 14-18. doi:10.1111/j.1600-0625.2010.01201.x es_ES
dc.description.references Bogh, M. K. B., Schmedes, A. V., Philipsen, P. A., Thieden, E., & Wulf, H. C. (2012). A small suberythemal ultraviolet B dose every second week is sufficient to maintain summer vitamin D levels: a randomized controlled trial. British Journal of Dermatology, 166(2), 430-433. doi:10.1111/j.1365-2133.2011.10697.x es_ES
dc.description.references Vähävihu, K., Ylianttila, L., Kautiainen, H., Viljakainen, H., Lamberg-Allardt, C., Hasan, T., … Snellman, E. (2010). Narrowband ultraviolet B course improves vitamin D balance in women in winter. British Journal of Dermatology, 162(4), 848-853. doi:10.1111/j.1365-2133.2010.09629.x es_ES
dc.description.references Webb, A. R., Kift, R., Berry, J. L., & Rhodes, L. E. (2011). The Vitamin D Debate: Translating Controlled Experiments into Reality for Human Sun Exposure Times. Photochemistry and Photobiology, 87(3), 741-745. doi:10.1111/j.1751-1097.2011.00898.x es_ES
dc.description.references Lagunova, Z., Porojnicu, A. C., Aksnes, L., Holick, M. F., Iani, V., Bruland, Ø. S., & Moan, J. (2013). Effect of vitamin D supplementation and ultraviolet B exposure on serum 25-hydroxyvitamin D concentrations in healthy volunteers: a randomized, crossover clinical trial. British Journal of Dermatology, 169(2), 434-440. doi:10.1111/bjd.12349 es_ES
dc.description.references Sallander, E., Wester, U., Bengtsson, E., & Wiegleb Edström, D. (2013). Vitamin D levels after UVB radiation: effects by UVA additions in a randomized controlled trial. Photodermatology, Photoimmunology & Photomedicine, 29(6), 323-329. doi:10.1111/phpp.12076 es_ES
dc.description.references Grigalavicius, M., Moan, J., Dahlback, A., & Juzeniene, A. (2015). Vitamin D and ultraviolet phototherapy in Caucasians. Journal of Photochemistry and Photobiology B: Biology, 147, 69-74. doi:10.1016/j.jphotobiol.2015.03.009 es_ES
dc.description.references RIVAS, M., ROJAS, E., ARAYA, M. C., & CALAF, G. M. (2015). Ultraviolet light exposure, skin cancer risk and vitamin D production. Oncology Letters, 10(4), 2259-2264. doi:10.3892/ol.2015.3519 es_ES
dc.description.references Karppinen, T., Ala-Houhala, M., Ylianttila, L., Kautiainen, H., Viljakainen, H., Reunala, T., & Snellman, E. (2016). Narrowband Ultraviolet B Exposures Maintain Vitamin D Levels During Winter: A Randomized Controlled Trial. Acta Dermato Venereologica, 96(4), 490-493. doi:10.2340/00015555-2269 es_ES
dc.description.references O’Sullivan, F., Laird, E., Kelly, D., van Geffen, J., van Weele, M., McNulty, H., … Zgaga, L. (2017). Ambient UVB Dose and Sun Enjoyment Are Important Predictors of Vitamin D Status in an Older Population. The Journal of Nutrition, 147(5), 858-868. doi:10.3945/jn.116.244079 es_ES
dc.description.references Fitzpatrick, T. B. (1988). The Validity and Practicality of Sun-Reactive Skin Types I Through VI. Archives of Dermatology, 124(6), 869. doi:10.1001/archderm.1988.01670060015008 es_ES
dc.description.references Serrano, M.-A., Cañada, J., Moreno, J. C., & Gurrea, G. (2017). Solar ultraviolet doses and vitamin D in a northern mid-latitude. Science of The Total Environment, 574, 744-750. doi:10.1016/j.scitotenv.2016.09.102 es_ES
dc.description.references UV-B Radiation THE ULTRAVIOLET INDEX Network. Accessed on 12 of February 2020. (http://www.agroambient.gva.es/es/web/calidad-ambiental/datos-historicos-uv). es_ES
dc.description.references McKenzie, R. L., Liley, J. B., & Björn, L. O. (2009). UV Radiation: Balancing Risks and Benefits. Photochemistry and Photobiology, 85(1), 88-98. doi:10.1111/j.1751-1097.2008.00400.x es_ES
dc.description.references Setlow, R. B., Grist, E., Thompson, K., & Woodhead, A. D. (1993). Wavelengths effective in induction of malignant melanoma. Proceedings of the National Academy of Sciences, 90(14), 6666-6670. doi:10.1073/pnas.90.14.6666 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem