- -

Study of the influence of radon in water on radon levels in air in a closed location

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Study of the influence of radon in water on radon levels in air in a closed location

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Noverques-Medina, Aina es_ES
dc.contributor.author Juste Vidal, Belen Jeanine es_ES
dc.contributor.author Sancho, M. es_ES
dc.contributor.author García-Fayos, Beatriz es_ES
dc.contributor.author Verdú Martín, Gumersindo Jesús es_ES
dc.date.accessioned 2021-05-27T03:34:43Z
dc.date.available 2021-05-27T03:34:43Z
dc.date.issued 2020-06 es_ES
dc.identifier.issn 0969-806X es_ES
dc.identifier.uri http://hdl.handle.net/10251/166836
dc.description.abstract [EN] Radon, radioactive gas that comes from uranium and radium decay was considered as a carcinogenic element by the World Health Organization in 1988. The hazard of this gas resides in two of its descendants, the Po-214 and Po-218, solid particles that adhere to the aerosols present in the air and are deposited in human lungs causing damage to its tissue. In closed spaces, radon tends to accumulate in the air reaching levels above the legislative limits established in the Directive 59/2019/EURATOM. However, radon is present not only in the air but also in soil, water and building materials. In this research it has been investigated water as a radon source. Due to its high variability, the main objective of this research is to study the influence of water radon concentration into air radon concentration in two situations: at a laboratory scale and in a real installation. For this purpose, an experimental device was designed at laboratory scale to analyze this influence in stable conditions of temperature, relative humidity and atmospheric pressure, thus reducing the interference of these variables in radon measurements. For field measurements, the radon levels in water and its possible influence on the increase in air concentration in a Waste Water Pre-Treatment Plant (WWPTP) have been analyzed. es_ES
dc.description.sponsorship This work has been funded by two projects: BIORAD and DESARROLLO DE METODOLOGIAS DE PREVENCION Y DE MODELOS DE DOSIMETRIA INTERNA PARA LAS RADIACIONES IONIZANTES RELACIONADAS CON MATERIALES NORM (MEMO RADION) of the ISIRYM University Institute in the framework of the Operational Programme 2014-2020 Comunitat Valenciana of the European Regional Development Fund, with reference IDIFEDER/2018/038. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Radiation Physics and Chemistry es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Radon in water es_ES
dc.subject Radon influence in air es_ES
dc.subject RadonScout plus es_ES
dc.subject Corentium pro es_ES
dc.subject Hidex 600 SL es_ES
dc.subject.classification INGENIERIA NUCLEAR es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Study of the influence of radon in water on radon levels in air in a closed location es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1016/j.radphyschem.2020.108761 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2FA%2F038/ES/DESARROLLO DE METODOLOGÍAS DE PREVENCIÓN Y DE MODELOS DE DOSIMETRÍA INTERNA PARA LAS RADIACIONES IONIZANTES RELACIONADAS CON MATERIALES NORM (MEMO RADIÓN)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Seguridad Industrial, Radiofísica y Medioambiental - Institut de Seguretat Industrial, Radiofísica i Mediambiental es_ES
dc.description.bibliographicCitation Noverques-Medina, A.; Juste Vidal, BJ.; Sancho, M.; García-Fayos, B.; Verdú Martín, GJ. (2020). Study of the influence of radon in water on radon levels in air in a closed location. Radiation Physics and Chemistry. 171:1-7. https://doi.org/10.1016/j.radphyschem.2020.108761 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 3rd International Conference on Dosimetry and its Applications (ICDA-3) es_ES
dc.relation.conferencedate Mayo 27-31,2019 es_ES
dc.relation.conferenceplace Lisbon, Portugal es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.radphyschem.2020.108761 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 7 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 171 es_ES
dc.relation.pasarela S\408319 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Battino, R. (1984). The Ostwald coefficient of gas solubility. Fluid Phase Equilibria, 15(3), 231-240. doi:10.1016/0378-3812(84)87009-0 es_ES
dc.description.references Baudron, P., Cockenpot, S., Lopez-Castejon, F., Radakovitch, O., Gilabert, J., Mayer, A., … Claude, C. (2015). Combining radon, short-lived radium isotopes and hydrodynamic modeling to assess submarine groundwater discharge from an anthropized semiarid watershed to a Mediterranean lagoon (Mar Menor, SE Spain). Journal of Hydrology, 525, 55-71. doi:10.1016/j.jhydrol.2015.03.015 es_ES
dc.description.references Kowalczk, A. J., & Froelich, P. N. (2010). Cave air ventilation and CO2 outgassing by radon-222 modeling: How fast do caves breathe? Earth and Planetary Science Letters, 289(1-2), 209-219. doi:10.1016/j.epsl.2009.11.010 es_ES
dc.description.references Moreno, V., Bach, J., Baixeras, C., & Font, L. (2014). Radon levels in groundwaters and natural radioactivity in soils of the volcanic region of La Garrotxa, Spain. Journal of Environmental Radioactivity, 128, 1-8. doi:10.1016/j.jenvrad.2013.10.021 es_ES
dc.description.references Nussbaum, E., & Harsh, J. B. (1958). Radon Solubility in Fatty Acids and Triglycerides. The Journal of Physical Chemistry, 62(1), 81-84. doi:10.1021/j150559a021 es_ES
dc.description.references Prichard, H. M., & Gesell, T. F. (1977). Rapid Measurements of 222Rn Concentrations in Water With a Commercial Liquid Scintillation Counter. Health Physics, 33(6), 577-581. doi:10.1097/00004032-197712000-00008 es_ES
dc.description.references Ródenas, C., Gómez, J., Soto, J., & Maraver, F. (2008). Natural radioactivity of spring water used as spas in Spain. Journal of Radioanalytical and Nuclear Chemistry, 277(3), 625-630. doi:10.1007/s10967-007-7158-3 es_ES
dc.description.references Sainz, C., Rábago, D., Fuente, I., Celaya, S., & Quindós, L. S. (2016). Description of the behavior of an aquifer by using continuous radon monitoring in a thermal spa. Science of The Total Environment, 543, 460-466. doi:10.1016/j.scitotenv.2015.11.052 es_ES
dc.description.references Schubert, M., Paschke, A., Lieberman, E., & Burnett, W. C. (2012). Air–Water Partitioning of 222Rn and its Dependence on Water Temperature and Salinity. Environmental Science & Technology, 46(7), 3905-3911. doi:10.1021/es204680n es_ES
dc.description.references SOTO, J., FERNANDEZ, P., QUINDOS, L., & GOMEZAROZAMENA, J. (1995). Radioactivity in Spanish spas. Science of The Total Environment, 162(2-3), 187-192. doi:10.1016/0048-9697(95)04454-9 es_ES
dc.description.references User Manual Radon Scout Plus, (2017) Sarad Company. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem