- -

Dynamic Models Supporting Personalised Chronic Disease Management through Healthcare Sensors with Interactive Process Mining

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dynamic Models Supporting Personalised Chronic Disease Management through Healthcare Sensors with Interactive Process Mining

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Valero Ramon, Zoe es_ES
dc.contributor.author Fernández Llatas, Carlos es_ES
dc.contributor.author Valdivieso, Bernardo es_ES
dc.contributor.author Traver Salcedo, Vicente es_ES
dc.date.accessioned 2021-05-27T03:34:52Z
dc.date.available 2021-05-27T03:34:52Z
dc.date.issued 2020-09 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166838
dc.description.abstract [EN] Rich streams of continuous data are available through Smart Sensors representing a unique opportunity to develop and analyse risk models in healthcare and extract knowledge from data. There is a niche for developing new algorithms, and visualisation and decision support tools to assist health professionals in chronic disease management incorporating data generated through smart sensors in a more precise and personalised manner. However, current understanding of risk models relies on static snapshots of health variables or measures, rather than ongoing and dynamic feedback loops of behaviour, considering changes and different states of patients and diseases. The rationale of this work is to introduce a new method for discovering dynamic risk models for chronic diseases, based on patients¿ dynamic behaviour provided by health sensors, using Process Mining techniques. Results show the viability of this method, three dynamic models have been discovered for the chronic diseases hypertension, obesity, and diabetes, based on the dynamic behaviour of metabolic risk factors associated. This information would support health professionals to translate a one-fits-all current approach to treatments and care, to a personalised medicine strategy, that fits treatments built on patients¿ unique behaviour thanks to dynamic risk modelling taking advantage of the amount data generated by smart sensors. es_ES
dc.description.sponsorship This research was partially funded by the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement no. 727560. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Process mining es_ES
dc.subject Interactive es_ES
dc.subject Dynamic models es_ES
dc.subject Chronic diseases es_ES
dc.subject Obesity es_ES
dc.subject Hypertension es_ES
dc.subject Hyperglycemia es_ES
dc.subject Smart sensors es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Dynamic Models Supporting Personalised Chronic Disease Management through Healthcare Sensors with Interactive Process Mining es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s20185330 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/727560/EU/Collective wisdom driving public health policies/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Valero Ramon, Z.; Fernández Llatas, C.; Valdivieso, B.; Traver Salcedo, V. (2020). Dynamic Models Supporting Personalised Chronic Disease Management through Healthcare Sensors with Interactive Process Mining. Sensors. 20(18):1-25. https://doi.org/10.3390/s20185330 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s20185330 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 25 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 18 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 32957673 es_ES
dc.identifier.pmcid PMC7570892 es_ES
dc.relation.pasarela S\418748 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Chen, M., Mao, S., & Liu, Y. (2014). Big Data: A Survey. Mobile Networks and Applications, 19(2), 171-209. doi:10.1007/s11036-013-0489-0 es_ES
dc.description.references Brennan, P., Perola, M., van Ommen, G.-J., & Riboli, E. (2017). Chronic disease research in Europe and the need for integrated population cohorts. European Journal of Epidemiology, 32(9), 741-749. doi:10.1007/s10654-017-0315-2 es_ES
dc.description.references Raghupathi, W., & Raghupathi, V. (2018). An Empirical Study of Chronic Diseases in the United States: A Visual Analytics Approach to Public Health. International Journal of Environmental Research and Public Health, 15(3), 431. doi:10.3390/ijerph15030431 es_ES
dc.description.references Forouzanfar, M. H., Afshin, A., Alexander, L. T., Anderson, H. R., Bhutta, Z. A., Biryukov, S., … Charlson, F. J. (2016). Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet, 388(10053), 1659-1724. doi:10.1016/s0140-6736(16)31679-8 es_ES
dc.description.references Gómez, J., Oviedo, B., & Zhuma, E. (2016). Patient Monitoring System Based on Internet of Things. Procedia Computer Science, 83, 90-97. doi:10.1016/j.procs.2016.04.103 es_ES
dc.description.references Harvey, A., Brand, A., Holgate, S. T., Kristiansen, L. V., Lehrach, H., Palotie, A., & Prainsack, B. (2012). The future of technologies for personalised medicine. New Biotechnology, 29(6), 625-633. doi:10.1016/j.nbt.2012.03.009 es_ES
dc.description.references Larry Jameson, J., & Longo, D. L. (2015). Precision Medicine—Personalized, Problematic, and Promising. Obstetrical & Gynecological Survey, 70(10), 612-614. doi:10.1097/01.ogx.0000472121.21647.38 es_ES
dc.description.references Collins, F. S., & Varmus, H. (2015). A New Initiative on Precision Medicine. New England Journal of Medicine, 372(9), 793-795. doi:10.1056/nejmp1500523 es_ES
dc.description.references Glasgow, R. E., Kwan, B. M., & Matlock, D. D. (2018). Realizing the full potential of precision health: The need to include patient-reported health behavior, mental health, social determinants, and patient preferences data. Journal of Clinical and Translational Science, 2(3), 183-185. doi:10.1017/cts.2018.31 es_ES
dc.description.references Whittemore, A. S. (2010). Evaluating health risk models. Statistics in Medicine, 29(23), 2438-2452. doi:10.1002/sim.3991 es_ES
dc.description.references Reynolds, B. C., Roem, J. L., Ng, D. K. S., Matsuda-Abedini, M., Flynn, J. T., Furth, S. L., … Parekh, R. S. (2020). Association of Time-Varying Blood Pressure With Chronic Kidney Disease Progression in Children. JAMA Network Open, 3(2), e1921213. doi:10.1001/jamanetworkopen.2019.21213 es_ES
dc.description.references Campbell, H., Hotchkiss, R., Bradshaw, N., & Porteous, M. (1998). Integrated care pathways. BMJ, 316(7125), 133-137. doi:10.1136/bmj.316.7125.133 es_ES
dc.description.references Schienkiewitz, A., Mensink, G. B. M., & Scheidt-Nave, C. (2012). Comorbidity of overweight and obesity in a nationally representative sample of German adults aged 18-79 years. BMC Public Health, 12(1). doi:10.1186/1471-2458-12-658 es_ES
dc.description.references Must, A. (1999). The Disease Burden Associated With Overweight and Obesity. JAMA, 282(16), 1523. doi:10.1001/jama.282.16.1523 es_ES
dc.description.references Audureau, E., Pouchot, J., & Coste, J. (2016). Gender-Related Differential Effects of Obesity on Health-Related Quality of Life via Obesity-Related Comorbidities. Circulation: Cardiovascular Quality and Outcomes, 9(3), 246-256. doi:10.1161/circoutcomes.115.002127 es_ES
dc.description.references Everhart, J. E., Pettitt, D. J., Bennett, P. H., & Knowler, W. C. (1992). Duration of Obesity Increases the Incidence of NIDDM. Diabetes, 41(2), 235-240. doi:10.2337/diab.41.2.235 es_ES
dc.description.references Wannamethee, S. G. (2005). Overweight and obesity and weight change in middle aged men: impact on cardiovascular disease and diabetes. Journal of Epidemiology & Community Health, 59(2), 134-139. doi:10.1136/jech.2003.015651 es_ES
dc.description.references Ziegelstein, R. C. (2018). Perspectives in Primary Care: Knowing the Patient as a Person in the Precision Medicine Era. The Annals of Family Medicine, 16(1), 4-5. doi:10.1370/afm.2169 es_ES
dc.description.references Tricoli, A., Nasiri, N., & De, S. (2017). Wearable and Miniaturized Sensor Technologies for Personalized and Preventive Medicine. Advanced Functional Materials, 27(15), 1605271. doi:10.1002/adfm.201605271 es_ES
dc.description.references Saponara, S., Donati, M., Fanucci, L., & Celli, A. (2016). An Embedded Sensing and Communication Platform, and a Healthcare Model for Remote Monitoring of Chronic Diseases. Electronics, 5(4), 47. doi:10.3390/electronics5030047 es_ES
dc.description.references Alvarez, C., Rojas, E., Arias, M., Munoz-Gama, J., Sepúlveda, M., Herskovic, V., & Capurro, D. (2018). Discovering role interaction models in the Emergency Room using Process Mining. Journal of Biomedical Informatics, 78, 60-77. doi:10.1016/j.jbi.2017.12.015 es_ES
dc.description.references Fernández-Llatas, C., Benedi, J.-M., García-Gómez, J., & Traver, V. (2013). Process Mining for Individualized Behavior Modeling Using Wireless Tracking in Nursing Homes. Sensors, 13(11), 15434-15451. doi:10.3390/s131115434 es_ES
dc.description.references Shahar, Y. (1997). A framework for knowledge-based temporal abstraction. Artificial Intelligence, 90(1-2), 79-133. doi:10.1016/s0004-3702(96)00025-2 es_ES
dc.description.references Orphanou, K., Stassopoulou, A., & Keravnou, E. (2016). DBN-Extended: A Dynamic Bayesian Network Model Extended With Temporal Abstractions for Coronary Heart Disease Prognosis. IEEE Journal of Biomedical and Health Informatics, 20(3), 944-952. doi:10.1109/jbhi.2015.2420534 es_ES
dc.description.references Spruijt-Metz, D., Hekler, E., Saranummi, N., Intille, S., Korhonen, I., Nilsen, W., … Pavel, M. (2015). Building new computational models to support health behavior change and maintenance: new opportunities in behavioral research. Translational Behavioral Medicine, 5(3), 335-346. doi:10.1007/s13142-015-0324-1 es_ES
dc.description.references Rojas, E., Munoz-Gama, J., Sepúlveda, M., & Capurro, D. (2016). Process mining in healthcare: A literature review. Journal of Biomedical Informatics, 61, 224-236. doi:10.1016/j.jbi.2016.04.007 es_ES
dc.description.references Yoo, S., Cho, M., Kim, E., Kim, S., Sim, Y., Yoo, D., … Song, M. (2016). Assessment of hospital processes using a process mining technique: Outpatient process analysis at a tertiary hospital. International Journal of Medical Informatics, 88, 34-43. doi:10.1016/j.ijmedinf.2015.12.018 es_ES
dc.description.references Ibanez-Sanchez, G., Fernandez-Llatas, C., Martinez-Millana, A., Celda, A., Mandingorra, J., Aparici-Tortajada, L., … Traver, V. (2019). Toward Value-Based Healthcare through Interactive Process Mining in Emergency Rooms: The Stroke Case. International Journal of Environmental Research and Public Health, 16(10), 1783. doi:10.3390/ijerph16101783 es_ES
dc.description.references Chambers, D. A., Feero, W. G., & Khoury, M. J. (2016). Convergence of Implementation Science, Precision Medicine, and the Learning Health Care System. JAMA, 315(18), 1941. doi:10.1001/jama.2016.3867 es_ES
dc.description.references Cameranesi, M., Diamantini, C., Mircoli, A., Potena, D., & Storti, E. (2020). Extraction of User Daily Behavior From Home Sensors Through Process Discovery. IEEE Internet of Things Journal, 7(9), 8440-8450. doi:10.1109/jiot.2020.2990537 es_ES
dc.description.references Fernández-Llatas, C., Meneu, T., Traver, V., & Benedi, J.-M. (2013). Applying Evidence-Based Medicine in Telehealth: An Interactive Pattern Recognition Approximation. International Journal of Environmental Research and Public Health, 10(11), 5671-5682. doi:10.3390/ijerph10115671 es_ES
dc.description.references Conca, T., Saint-Pierre, C., Herskovic, V., Sepúlveda, M., Capurro, D., Prieto, F., & Fernandez-Llatas, C. (2018). Multidisciplinary Collaboration in the Treatment of Patients With Type 2 Diabetes in Primary Care: Analysis Using Process Mining. Journal of Medical Internet Research, 20(4), e127. doi:10.2196/jmir.8884 es_ES
dc.description.references Makaroff, L. E. (2017). The need for international consensus on prediabetes. The Lancet Diabetes & Endocrinology, 5(1), 5-7. doi:10.1016/s2213-8587(16)30328-x es_ES
dc.description.references Shiue, I., McMeekin, P., & Price, C. (2017). Retrospective observational study of emergency admission, readmission and the ‘weekend effect’. BMJ Open, 7(3), e012493. doi:10.1136/bmjopen-2016-012493 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem