Mostrar el registro sencillo del ítem
dc.contributor.author | Urbano, Oscar | es_ES |
dc.contributor.author | Perles, Angel | es_ES |
dc.contributor.author | Pedraza, Cesar | es_ES |
dc.contributor.author | Rubio-Arraez, Susana | es_ES |
dc.contributor.author | Castelló Gómez, María Luisa | es_ES |
dc.contributor.author | Ortolá Ortolá, Mª Dolores | es_ES |
dc.contributor.author | Mercado Romero, Ricardo | es_ES |
dc.date.accessioned | 2021-05-27T03:35:00Z | |
dc.date.available | 2021-05-27T03:35:00Z | |
dc.date.issued | 2020-02 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166840 | |
dc.description.abstract | [EN] This paper presents the design and validation of a traceability system, based on radio frequency identification (RFID) technology and Internet of Things (IoT) services, intended to address the interconnection and cost-implementation problems typical in traceability systems. The RFID layer integrates temperature sensors into RFID tags, to track and trace food conditions during transportation. The IoT paradigm makes it possible to connect multiple systems to the same platform, addressing interconnection problems between different technology providers. The cost-implementation issues are addressed following the Data as a Service (DaaS) billing scheme, where users pay for the data they consume and not the installed equipment, avoiding the big initial investment that these high-tech solutions commonly require. The developed system is validated in two case scenarios, one carried out in controlled laboratory conditions, monitoring chopped pumpkin. Another case, carried out in a real scenario, monitors oranges sent from Valencia, Spain to Cork, Ireland. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Traceability | es_ES |
dc.subject | Internet of Things | es_ES |
dc.subject | Radio frequency identification (RFID) tags | es_ES |
dc.subject | Wireless sensor network (WSN) | es_ES |
dc.subject | Cold chain | es_ES |
dc.subject | Food monitoring for safety | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Cost-Effective Implementation of a Temperature Traceability System Based on Smart RFID Tags and IoT Services | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s20041163 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.description.bibliographicCitation | Urbano, O.; Perles, A.; Pedraza, C.; Rubio-Arraez, S.; Castelló Gómez, ML.; Ortolá Ortolá, MD.; Mercado Romero, R. (2020). Cost-Effective Implementation of a Temperature Traceability System Based on Smart RFID Tags and IoT Services. Sensors. 20(4):1-19. https://doi.org/10.3390/s20041163 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/s20041163 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 19 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 1424-8220 | es_ES |
dc.identifier.pmid | 32093218 | es_ES |
dc.identifier.pmcid | PMC7071464 | es_ES |
dc.relation.pasarela | S\403481 | es_ES |
dc.description.references | Aung, M. M., & Chang, Y. S. (2014). Traceability in a food supply chain: Safety and quality perspectives. Food Control, 39, 172-184. doi:10.1016/j.foodcont.2013.11.007 | es_ES |
dc.description.references | Bosona, T., & Gebresenbet, G. (2013). Food traceability as an integral part of logistics management in food and agricultural supply chain. Food Control, 33(1), 32-48. doi:10.1016/j.foodcont.2013.02.004 | es_ES |
dc.description.references | Bechini, A., Cimino, M. G. C. A., Marcelloni, F., & Tomasi, A. (2008). Patterns and technologies for enabling supply chain traceability through collaborative e-business. Information and Software Technology, 50(4), 342-359. doi:10.1016/j.infsof.2007.02.017 | es_ES |
dc.description.references | Badia-Melis, R., Mishra, P., & Ruiz-García, L. (2015). Food traceability: New trends and recent advances. A review. Food Control, 57, 393-401. doi:10.1016/j.foodcont.2015.05.005 | es_ES |
dc.description.references | Timestrip Visual Indicators of Time and Temperaturehttps://timestrip.com/ | es_ES |
dc.description.references | Storøy, J., Thakur, M., & Olsen, P. (2013). The TraceFood Framework – Principles and guidelines for implementing traceability in food value chains. Journal of Food Engineering, 115(1), 41-48. doi:10.1016/j.jfoodeng.2012.09.018 | es_ES |
dc.description.references | Pizzuti, T., Mirabelli, G., Sanz-Bobi, M. A., & Goméz-Gonzaléz, F. (2014). Food Track & Trace ontology for helping the food traceability control. Journal of Food Engineering, 120, 17-30. doi:10.1016/j.jfoodeng.2013.07.017 | es_ES |
dc.description.references | Landt, J. (2005). The history of RFID. IEEE Potentials, 24(4), 8-11. doi:10.1109/mp.2005.1549751 | es_ES |
dc.description.references | Costa, C., Antonucci, F., Pallottino, F., Aguzzi, J., Sarriá, D., & Menesatti, P. (2012). A Review on Agri-food Supply Chain Traceability by Means of RFID Technology. Food and Bioprocess Technology, 6(2), 353-366. doi:10.1007/s11947-012-0958-7 | es_ES |
dc.description.references | Mainetti, L., Mele, F., Patrono, L., Simone, F., Stefanizzi, M. L., & Vergallo, R. (2013). An RFID-Based Tracing and Tracking System for the Fresh Vegetables Supply Chain. International Journal of Antennas and Propagation, 2013, 1-15. doi:10.1155/2013/531364 | es_ES |
dc.description.references | Figorilli, S., Antonucci, F., Costa, C., Pallottino, F., Raso, L., Castiglione, M., … Menesatti, P. (2018). A Blockchain Implementation Prototype for the Electronic Open Source Traceability of Wood along the Whole Supply Chain. Sensors, 18(9), 3133. doi:10.3390/s18093133 | es_ES |
dc.description.references | Aguzzi, J., Sbragaglia, V., Sarriá, D., García, J. A., Costa, C., Río, J. del, … Sardà, F. (2011). A New Laboratory Radio Frequency Identification (RFID) System for Behavioural Tracking of Marine Organisms. Sensors, 11(10), 9532-9548. doi:10.3390/s111009532 | es_ES |
dc.description.references | Donelli, M. (2018). An RFID-Based Sensor for Masonry Crack Monitoring. Sensors, 18(12), 4485. doi:10.3390/s18124485 | es_ES |
dc.description.references | De Souza, P., Marendy, P., Barbosa, K., Budi, S., Hirsch, P., Nikolic, N., … Davie, A. (2018). Low-Cost Electronic Tagging System for Bee Monitoring. Sensors, 18(7), 2124. doi:10.3390/s18072124 | es_ES |
dc.description.references | Corchia, L., Monti, G., & Tarricone, L. (2019). A Frequency Signature RFID Chipless Tag for Wearable Applications. Sensors, 19(3), 494. doi:10.3390/s19030494 | es_ES |
dc.description.references | Zuffanelli, S., Aguila, P., Zamora, G., Paredes, F., Martin, F., & Bonache, J. (2016). A High-Gain Passive UHF-RFID Tag with Increased Read Range. Sensors, 16(7), 1150. doi:10.3390/s16071150 | es_ES |
dc.description.references | Monteleone, S., Sampaio, M., & Maia, R. F. (2017). A novel deployment of smart Cold Chain system using 2G-RFID-Sys temperature monitoring in medicine Cold Chain based on Internet of Things. 2017 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI). doi:10.1109/soli.2017.8120995 | es_ES |
dc.description.references | Zou, Z., Chen, Q., Uysal, I., & Zheng, L. (2014). Radio frequency identification enabled wireless sensing for intelligent food logistics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2017), 20130313. doi:10.1098/rsta.2013.0313 | es_ES |
dc.description.references | Azzarelli, J. M., Mirica, K. A., Ravnsbæk, J. B., & Swager, T. M. (2014). Wireless gas detection with a smartphone via rf communication. Proceedings of the National Academy of Sciences, 111(51), 18162-18166. doi:10.1073/pnas.1415403111 | es_ES |
dc.description.references | Pies, M., Hajovsky, R., & Ozana, S. (2014). Wireless measurement of carbon monoxide concentration. 2014 14th International Conference on Control, Automation and Systems (ICCAS 2014). doi:10.1109/iccas.2014.6987843 | es_ES |
dc.description.references | Azzara, A., Bocchino, S., Pagano, P., Pellerano, G., & Petracca, M. (2013). Middleware solutions in WSN: The IoT oriented approach in the ICSI project. 2013 21st International Conference on Software, Telecommunications and Computer Networks - (SoftCOM 2013). doi:10.1109/softcom.2013.6671886 | es_ES |
dc.description.references | Ribeiro, A. R. L., Silva, F. C. S., Freitas, L. C., Costa, J. C., & Francês, C. R. (2005). SensorBus. Proceedings of the 3rd international IFIP/ACM Latin American conference on Networking - LANC ’05. doi:10.1145/1168117.1168119 | es_ES |
dc.description.references | Sulc, V., Kuchta, R., & Vrba, R. (2010). IQRF Smart House - A Case Study. 2010 Third International Conference on Advances in Mesh Networks. doi:10.1109/mesh.2010.17 | es_ES |
dc.description.references | Porkodi, R., & Bhuvaneswari, V. (2014). The Internet of Things (IoT) Applications and Communication Enabling Technology Standards: An Overview. 2014 International Conference on Intelligent Computing Applications. doi:10.1109/icica.2014.73 | es_ES |
dc.description.references | EPC Radio-Frequency Identity Protocols. Generation-2 UHF RFIDhttps://www.gs1.org/sites/default/files/docs/epc/uhfc1g2_2_0_0_standard_20131101.pdf | es_ES |
dc.description.references | Uusitalo, M. (2006). Global Vision for the Future Wireless World from the WWRF. IEEE Vehicular Technology Magazine>, 1(2), 4-8. doi:10.1109/mvt.2006.283570 | es_ES |
dc.description.references | Sung, J., Lopez, T. S., & Kim, D. (2007). The EPC Sensor Network for RFID and WSN Integration Infrastructure. Fifth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PerComW’07). doi:10.1109/percomw.2007.113 | es_ES |
dc.description.references | Chunxiao Fan, Zhigang Wen, Fan Wang, & Yuexin Wu. (2011). A middleware of Internet of Things (IoT) based on ZigBee and RFID. IET International Conference on Communication Technology and Application (ICCTA 2011). doi:10.1049/cp.2011.0765 | es_ES |
dc.description.references | Centenaro, M., Vangelista, L., Zanella, A., & Zorzi, M. (2016). Long-range communications in unlicensed bands: the rising stars in the IoT and smart city scenarios. IEEE Wireless Communications, 23(5), 60-67. doi:10.1109/mwc.2016.7721743 | es_ES |
dc.description.references | Hai Liu, Bolic, M., Nayak, A., & Stojmenovic, I. (2008). Taxonomy and Challenges of the Integration of RFID and Wireless Sensor Networks. IEEE Network, 22(6), 26-35. doi:10.1109/mnet.2008.4694171 | es_ES |
dc.description.references | Bertolini, M., Bevilacqua, M., & Massini, R. (2006). FMECA approach to product traceability in the food industry. Food Control, 17(2), 137-145. doi:10.1016/j.foodcont.2004.09.013 | es_ES |
dc.description.references | Zhang, M., & Li, P. (2012). RFID Application Strategy in Agri-Food Supply Chain Based on Safety and Benefit Analysis. Physics Procedia, 25, 636-642. doi:10.1016/j.phpro.2012.03.137 | es_ES |
dc.description.references | Engels, D. W., Kang, Y. S., & Wang, J. (2013). On security with the new Gen2 RFID security framework. 2013 IEEE International Conference on RFID (RFID). doi:10.1109/rfid.2013.6548148 | es_ES |
dc.description.references | SINIEV: Un Centro Inteligente De Control De Tránsito Y Transporte Que Beneficiaría A Todo El Paíshttps://revistadelogistica.com/actualidad/siniev-un-centro-inteligente-de-control-de-transito-y-transporte-que-beneficiara-a-todo-el-pais/ | es_ES |
dc.description.references | Tentzeris, M. M., Kim, S., Traille, A., Aubert, H., Yoshihiro, K., Georgiadis, A., & Collado, A. (2013). Inkjet-printed RFID-enabled sensors on paper for IoT and “Smart Skin” applications. ICECom 2013. doi:10.1109/icecom.2013.6684749 | es_ES |
dc.description.references | Vega, F., Pantoja, J., Morales, S., Urbano, O., Arevalo, A., Muskus, E., … Hernandez, N. (2016). An IoT-based open platform for monitoring non-ionizing radiation levels in Colombia. 2016 IEEE Colombian Conference on Communications and Computing (COLCOM). doi:10.1109/colcomcon.2016.7516379 | es_ES |
dc.description.references | Yang, K., & Jia, X. (2011). Data storage auditing service in cloud computing: challenges, methods and opportunities. World Wide Web, 15(4), 409-428. doi:10.1007/s11280-011-0138-0 | es_ES |
dc.description.references | Alfian, G., Rhee, J., Ahn, H., Lee, J., Farooq, U., Ijaz, M. F., & Syaekhoni, M. A. (2017). Integration of RFID, wireless sensor networks, and data mining in an e-pedigree food traceability system. Journal of Food Engineering, 212, 65-75. doi:10.1016/j.jfoodeng.2017.05.008 | es_ES |
dc.description.references | Chen, R.-Y. (2015). Autonomous tracing system for backward design in food supply chain. Food Control, 51, 70-84. doi:10.1016/j.foodcont.2014.11.004 | es_ES |
dc.description.references | Song, J., Wei, Q., Wang, X., Li, D., Liu, C., Zhang, M., & Meng, L. (2018). Degradation of carotenoids in dehydrated pumpkins as affected by different storage conditions. Food Research International, 107, 130-136. doi:10.1016/j.foodres.2018.02.024 | es_ES |
dc.description.references | Montesano, D., Rocchetti, G., Putnik, P., & Lucini, L. (2018). Bioactive profile of pumpkin: an overview on terpenoids and their health-promoting properties. Current Opinion in Food Science, 22, 81-87. doi:10.1016/j.cofs.2018.02.003 | es_ES |
dc.description.references | Rubio-Arraez, S., Capella, J. V., Castelló, M. L., & Ortolá, M. D. (2016). Physicochemical characteristics of citrus jelly with non cariogenic and functional sweeteners. Journal of Food Science and Technology, 53(10), 3642-3650. doi:10.1007/s13197-016-2319-4 | es_ES |
dc.description.references | Carmona, L., Alquézar, B., Marques, V. V., & Peña, L. (2017). Anthocyanin biosynthesis and accumulation in blood oranges during postharvest storage at different low temperatures. Food Chemistry, 237, 7-14. doi:10.1016/j.foodchem.2017.05.076 | es_ES |