- -

Study of potential capacity as adsorbent of Moringa oleifera substrates for treatment of radon contaminated air in indoor spaces: Preliminary test

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Study of potential capacity as adsorbent of Moringa oleifera substrates for treatment of radon contaminated air in indoor spaces: Preliminary test

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Fayos, Beatriz es_ES
dc.contributor.author Juste Vidal, Belen Jeanine es_ES
dc.contributor.author Sancho, M. es_ES
dc.contributor.author Arnal Arnal, José Miguel es_ES
dc.contributor.author Noverques-Medina, Aina es_ES
dc.contributor.author Verdú Martín, Gumersindo Jesús es_ES
dc.date.accessioned 2021-05-27T03:35:16Z
dc.date.available 2021-05-27T03:35:16Z
dc.date.issued 2020-02 es_ES
dc.identifier.issn 0969-806X es_ES
dc.identifier.uri http://hdl.handle.net/10251/166843
dc.description.abstract [EN] Radon is a radioactive gas known to be a human carcinogenic element that causes lung cancer. The Directive 2013/59/EURATOM establishes action plans for its monitorization and control in water and air specially at workplaces. There are several techniques to reduce the concentration of radon in air mainly based on improving ventilation rates. However, intelligent and energy-efficient buildings are well insulated and have centralized ventilation systems where air is recirculated continuously. This strategy has a negative influence on radon accumulation at indoor spaces. So, ventilation systems should be composed by filters with suitable materials to adsorb radon from indoor air. This work studies the radon adsorption ability of the most used adsorbent (activated carbon) and some not-processed substrates coming from Moringa oleifera, a natural plant with high potential as adsorbent for heavy metals and coagulant in and water treatment. The radon adsorption efficiency of the different solids is analyzed, showing promising results for radionuclide removal from air. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Radiation Physics and Chemistry es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Moringa es_ES
dc.subject Radon es_ES
dc.subject Air es_ES
dc.subject Adsorption es_ES
dc.subject.classification INGENIERIA NUCLEAR es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Study of potential capacity as adsorbent of Moringa oleifera substrates for treatment of radon contaminated air in indoor spaces: Preliminary test es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.radphyschem.2019.04.012 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Seguridad Industrial, Radiofísica y Medioambiental - Institut de Seguretat Industrial, Radiofísica i Mediambiental es_ES
dc.description.bibliographicCitation García-Fayos, B.; Juste Vidal, BJ.; Sancho, M.; Arnal Arnal, JM.; Noverques-Medina, A.; Verdú Martín, GJ. (2020). Study of potential capacity as adsorbent of Moringa oleifera substrates for treatment of radon contaminated air in indoor spaces: Preliminary test. Radiation Physics and Chemistry. 167:1-3. https://doi.org/10.1016/j.radphyschem.2019.04.012 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.radphyschem.2019.04.012 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 3 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 167 es_ES
dc.relation.pasarela S\400861 es_ES
dc.description.references Garcia-Fayos, B., Arnal, J. M., Piris, J., & Sancho, M. (2016). Valorization of Moringa oleifera seed husk as biosorbent: isotherm and kinetics studies to remove cadmium and copper from aqueous solutions. Desalination and Water Treatment, 57(48-49), 23382-23396. doi:10.1080/19443994.2016.1180473 es_ES
dc.description.references García-Tobar, J. (2014). Influencia de las condiciones meteorológicas sobre el nivel de radón a corto plazo en un laboratorio subterráneo. Nova Scientia, 6(12), 78. doi:10.21640/ns.v6i12.25 es_ES
dc.description.references George, A. C. (1984). Passive, Integrated Measurement of Indoor Radon Using Activated Carbon. Health Physics, 46(4), 867-872. doi:10.1097/00004032-198404000-00012 es_ES
dc.description.references Guyot, G., Sherman, M. H., & Walker, I. S. (2018). Smart ventilation energy and indoor air quality performance in residential buildings: A review. Energy and Buildings, 165, 416-430. doi:10.1016/j.enbuild.2017.12.051 es_ES
dc.description.references Karunakara, N., Sudeep Kumara, K., Yashodhara, I., Sahoo, B. K., Gaware, J. J., Sapra, B. K., & Mayya, Y. S. (2015). Evaluation of radon adsorption characteristics of a coconut shell-based activated charcoal system for radon and thoron removal applications. Journal of Environmental Radioactivity, 142, 87-95. doi:10.1016/j.jenvrad.2014.12.017 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem