- -

Wideband QAM-over-SMF/turbulent FSO downlinks in a PON architecture for ubiquitous connectivity

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Wideband QAM-over-SMF/turbulent FSO downlinks in a PON architecture for ubiquitous connectivity

Show simple item record

Files in this item

dc.contributor.author Nguyen, Dong-Nhat es_ES
dc.contributor.author Vallejo-Castro, Luis es_ES
dc.contributor.author Bohata, Jan es_ES
dc.contributor.author Ortega Tamarit, Beatriz es_ES
dc.contributor.author Ghassemlooy, Zabih es_ES
dc.contributor.author Zvanovec, Stanislav es_ES
dc.date.accessioned 2021-05-27T03:35:46Z
dc.date.available 2021-05-27T03:35:46Z
dc.date.issued 2020-11-15 es_ES
dc.identifier.issn 0030-4018 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166850
dc.description.abstract [EN] We propose and investigate for the first time a seamless millimeter-wave (mmW) radio-over-fiber (RoF) and radio-over-free-space optics (FSO)-based downlink for use in a passive optical network architecture using 4-, 16- and 64-quadrature amplitude modulation (QAM) for broadband wireless access (BWA) networks. The proposed system is implemented in both experiment and simulation to realize continuous and ubiquitous coverage in urban and rural areas. We outline, a proof-of-concept demonstration of 4-, 16- and 64-QAMs at data rates of 34, 67 and 100 Mb/s, respectively transmitted over a 15 km standard single-mode fiber (SMF), which is then optically up-converted to 25 GHz for transmission over a 10 km of SMF and a 2 m of FSO channel under a non-uniform turbulent condition. We show the measured error vector magnitude (EVM) values of 13, 9.2 and 7.3% for 4-, 16- and 64-QAM, respectively, which are below the corresponding standard EVM requirements and therefore confirm the practicality of the proposed hybrid system. Depending on the data rates, each modulation can be adaptively configured. We report a simulation of a 10 Gb/s 4- and 64-QAM hybrid RoF-FSO downlink under an extended non-uniform turbulence regime to verify the feasibility of the proposed scheme for use in practical applications. By implementing the decision-directed carrier phase recovery and linear electrical equalization, EVMs can be efficiently reduced below the required limits. We further evaluate the proposed system performance in terms of the bit error rates, constellation diagrams, received optical and mmW powers. Using state-of-the-art K-band power amplifiers and conical horn antennas, the maximum wireless transmission distance is estimated to be about 135 m for use in the last-mile BWA networks. es_ES
dc.description.sponsorship This work was supported in part by the Ministry of Education, Youth and Sports of Czech Republic (CZ.02.2.69/0.0/0.0/16_027/0008465), and in part by European Cooperation in Science and Technology COST CA16220 and CTU project SGS20/166/OHK3/3T/13. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation COST/CA16220 es_ES
dc.relation MSMT/CZ.02.2.69/0.0/0.0/16_027/0008465 es_ES
dc.relation CVUT/SGS20/166/OHK3/3T/13 es_ES
dc.relation.ispartof Optics Communications es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Free-space optical communication es_ES
dc.subject Fiber-FSO integrated system es_ES
dc.subject Atmospheric turbulence es_ES
dc.subject Millimeter-wave es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Wideband QAM-over-SMF/turbulent FSO downlinks in a PON architecture for ubiquitous connectivity es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.optcom.2020.126281 es_ES
dc.rights.accessRights Embargado es_ES
dc.date.embargoEndDate 2022-07-16 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Nguyen, D.; Vallejo-Castro, L.; Bohata, J.; Ortega Tamarit, B.; Ghassemlooy, Z.; Zvanovec, S. (2020). Wideband QAM-over-SMF/turbulent FSO downlinks in a PON architecture for ubiquitous connectivity. Optics Communications. 475:1-9. https://doi.org/10.1016/j.optcom.2020.126281 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.optcom.2020.126281 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 475 es_ES
dc.relation.pasarela S\418862 es_ES
dc.contributor.funder Czech Technical University in Prague es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.contributor.funder Ministry of Education, Youth and Sports, República Checa es_ES
dc.description.references Li, X., Yu, J., Zhang, Z., Xiao, J., & Chang, G.-K. (2015). Photonic vector signal generation at W-band employing an optical frequency octupling scheme enabled by a single MZM. Optics Communications, 349, 6-10. doi:10.1016/j.optcom.2015.03.044 es_ES
dc.description.references Kawanishi, T. (2019). THz and Photonic Seamless Communications. Journal of Lightwave Technology, 37(7), 1671-1679. doi:10.1109/jlt.2019.2897042 es_ES
dc.description.references Li, X., Yu, J., & Chang, G.-K. (2020). Photonics-Aided Millimeter-Wave Technologies for Extreme Mobile Broadband Communications in 5G. Journal of Lightwave Technology, 38(2), 366-378. doi:10.1109/jlt.2019.2935137 es_ES
dc.description.references Wang, H.-Y., Cheng, C.-H., Tsai, C.-T., Chi, Y.-C., & Lin, G.-R. (2019). 28-GHz Wireless Carrier Heterodyned From Orthogonally Polarized Tri-Color Laser Diode for Fading-Free Long-Reach MMWoF. Journal of Lightwave Technology, 37(13), 3388-3400. doi:10.1109/jlt.2019.2916787 es_ES
dc.description.references Khalighi, M. A., & Uysal, M. (2014). Survey on Free Space Optical Communication: A Communication Theory Perspective. IEEE Communications Surveys & Tutorials, 16(4), 2231-2258. doi:10.1109/comst.2014.2329501 es_ES
dc.description.references . KORUZA Transceivers, [Online]. Available: http://www.koruza.net/. es_ES
dc.description.references Dat, P. T., Bekkali, A., Kazaura, K., Wakamori, K., Suzuki, T., Matsumoto, M., … Komaki, S. (2009). Studies on characterizing the transmission of RF signals over a turbulent FSO link. Optics Express, 17(10), 7731. doi:10.1364/oe.17.007731 es_ES
dc.description.references Y. Alfadhli, et al. Real-time FPGA demonstration of hybrid bi-directional MMW and FSO fronthaul architecture, in: 2019 Optical Fiber Communications Conference and Exhibition, OFC 2019 - Proceedings, 2019, p. W2A.39. es_ES
dc.description.references P.T. Dat, A. Kanno, K. Inagaki, T. Umezawa, N. Yamamoto, T. Kawanishi, Hybrid optical wireless-mmWave: ultra high-speed indoor communications for beyond 5G, in: IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS, 2019, pp. 1003–1004. es_ES
dc.description.references Esmail, M. A., Ragheb, A., Fathallah, H., & Alouini, M.-S. (2017). Investigation and Demonstration of High Speed Full-Optical Hybrid FSO/Fiber Communication System Under Light Sand Storm Condition. IEEE Photonics Journal, 9(1), 1-12. doi:10.1109/jphot.2016.2641741 es_ES
dc.description.references Nguyen, D.-N., Bohata, J., Komanec, M., Zvanovec, S., Ortega, B., & Ghassemlooy, Z. (2019). Seamless 25 GHz Transmission of LTE 4/16/64-QAM Signals Over Hybrid SMF/FSO and Wireless Link. Journal of Lightwave Technology, 37(24), 6040-6047. doi:10.1109/jlt.2019.2945588 es_ES
dc.description.references Vallejo, L., Komanec, M., Ortega, B., Bohata, J., Nguyen, D.-N., Zvanovec, S., & Almenar, V. (2020). Impact of Thermal-Induced Turbulent Distribution Along FSO Link on Transmission of Photonically Generated mmW Signals in the Frequency Range 26–40 GHz. IEEE Photonics Journal, 12(1), 1-9. doi:10.1109/jphot.2019.2959227 es_ES
dc.description.references Alimi, I. A., Teixeira, A. L., & Monteiro, P. P. (2018). Toward an Efficient C-RAN Optical Fronthaul for the Future Networks: A Tutorial on Technologies, Requirements, Challenges, and Solutions. IEEE Communications Surveys & Tutorials, 20(1), 708-769. doi:10.1109/comst.2017.2773462 es_ES
dc.description.references N. Iiyama, S.-Y. Kim, T. Shimada, S. Kimura, N. Yoshimoto, Co-existent downstream scheme between OOK and QAM signals in an optical access network using software-defined technology, in: OFC/NFOEC 2012 - Optical Fiber Communication and the National Fiber Optic Engineers Conference, vol. 1, 2012, p. JTh2A.53. es_ES
dc.description.references Yeh, C.-H., Lin, W.-P., Luo, C.-M., Xie, Y.-R., Chang, Y.-J., & Chow, C.-W. (2019). Utilizing Single Lightwave for Delivering Baseband/FSO/MMW Traffics Simultaneously in PON Architecture. IEEE Access, 7, 138927-138931. doi:10.1109/access.2019.2940898 es_ES
dc.description.references Van Veen, D. T., Houtsma, V. E., Gnauck, A. H., & Iannone, P. (2015). Demonstration of 40-Gb/s TDM-PON Over 42-km With 31 dB Optical Power Budget Using an APD-Based Receiver. Journal of Lightwave Technology, 33(8), 1675-1680. doi:10.1109/jlt.2015.2399271 es_ES
dc.description.references Rodríguez, S., Rommel, S., Vegas Olmos, J. J., & Monroy, I. T. (2017). Reconfigurable radio access unit to dynamically distribute W-band signals in 5G wireless access networks. Optical Switching and Networking, 24, 21-24. doi:10.1016/j.osn.2016.10.002 es_ES
dc.description.references Jianjun Yu, Zhensheng Jia, Yi, L., Su, Y., Gee-Kung Chang, & Ting Wang. (2006). Optical millimeter-wave generation or up-conversion using external modulators. IEEE Photonics Technology Letters, 18(1), 265-267. doi:10.1109/lpt.2005.862006 es_ES
dc.description.references Ma, J., Yu, J., Yu, C., Xin, X., Zeng, J., & Chen, L. (2007). Fiber Dispersion Influence on Transmission of the Optical Millimeter-Waves Generated Using LN-MZM Intensity Modulation. Journal of Lightwave Technology, 25(11), 3244-3256. doi:10.1109/jlt.2007.907794 es_ES
dc.description.references Wang, Y., Yu, J., Li, X., Xu, Y., Chi, N., & Chang, G.-K. (2015). Photonic Vector Signal Generation Employing a Single-Drive MZM-Based Optical Carrier Suppression Without Precoding. Journal of Lightwave Technology, 33(24), 5235-5241. doi:10.1109/jlt.2015.2499042 es_ES
dc.description.references Karinou, F., Stojanovic, N., Daly, A., Neumeyr, C., & Ortsiefer, M. (2016). 1.55-μm Long-Wavelength VCSEL-Based Optical Interconnects for Short-Reach Networks. Journal of Lightwave Technology, 34(12), 2897-2904. doi:10.1109/jlt.2015.2505359 es_ES
dc.description.references Almonacil, S., Jenneve, P., Ramantanis, P., & Layec, P. (2018). A Novel Constellation Phase Rotation Method to Reduce Transmitter Noise in Metro Links. IEEE Photonics Technology Letters, 30(16), 1459-1462. doi:10.1109/lpt.2018.2853645 es_ES
dc.description.references Li, L., Zhang, R., Liao, P., Cao, Y., Song, H., Zhao, Y., … Willner, A. E. (2019). Mitigation for turbulence effects in a 40-Gbit/s orbital-angular-momentum-multiplexed free-space optical link between a ground station and a retro-reflecting UAV using MIMO equalization. Optics Letters, 44(21), 5181. doi:10.1364/ol.44.005181 es_ES
dc.description.references Kanno, A., Dat, P. T., Kuri, T., Hosako, I., Kawanishi, T., Yoshida, Y., … Kitayama, K. (2012). Coherent Radio-Over-Fiber and Millimeter-Wave Radio Seamless Transmission System for Resilient Access Networks. IEEE Photonics Journal, 4(6), 2196-2204. doi:10.1109/jphot.2012.2228182 es_ES


This item appears in the following Collection(s)

Show simple item record