- -

New Insights into the Design and Application of a Passive Acoustic Monitoring System for the Assessment of the Good Environmental Status in Spanish Marine Waters

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

New Insights into the Design and Application of a Passive Acoustic Monitoring System for the Assessment of the Good Environmental Status in Spanish Marine Waters

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lara Martínez, Guillermo-Fernan es_ES
dc.contributor.author Miralles Ricós, Ramón es_ES
dc.contributor.author Bou-Cabo, Manuel es_ES
dc.contributor.author Esteban, José Antonio es_ES
dc.contributor.author Espinosa Roselló, Víctor es_ES
dc.date.accessioned 2021-05-27T03:35:54Z
dc.date.available 2021-05-27T03:35:54Z
dc.date.issued 2020-09 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166851
dc.description.abstract [EN] Passive acoustic monitoring systems allow for non-invasive monitoring of underwater species and anthropogenic noise. One of these systems has been developed keeping in mind the need to create a user-friendly tool to obtain the ambient noise indicators, while at the same time providing a powerful tool for marine scientists and biologists to progress in studying the effect of human activities on species and ecosystems. The device is based on a low-power processor with ad-hoc electronics, ensuring that the system has efficient energy management, and that the storage capacity is large enough to allow deployments for long periods. An application is presented using data from an acoustic campaign done in 2018 at El Gorguel (Cartagena, Spain). The results show a good agreement between theoretical maps created using AIS data and the ambient noise level indicators measured in the frequency bands of 63 Hz and 125 Hz specified in the directive 11 of the EU Marine Strategy Framework Directive. Using a 2D representation, these ambient noise indicators have enabled repetitive events and daily variations in boat traffic to be identified. The ship noise registered can also be used to track ships by using the acoustic signatures of the engine propellers¿ noise. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Underwater acoustics es_ES
dc.subject Numerical methods es_ES
dc.subject Passive acoustic monitoring es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title New Insights into the Design and Application of a Passive Acoustic Monitoring System for the Assessment of the Good Environmental Status in Spanish Marine Waters es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s20185353 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC//11.0661%2F2018794607%2FSUB%2FENV.C2/EU/Risk-based Approaches to Good Environmental Status (RAGES)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Lara Martínez, G.; Miralles Ricós, R.; Bou-Cabo, M.; Esteban, JA.; Espinosa Roselló, V. (2020). New Insights into the Design and Application of a Passive Acoustic Monitoring System for the Assessment of the Good Environmental Status in Spanish Marine Waters. Sensors. 20(18):1-12. https://doi.org/10.3390/s20185353 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s20185353 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 18 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 32961998 es_ES
dc.identifier.pmcid PMC7571056 es_ES
dc.relation.pasarela S\418204 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Lara, G., Bou-Cabo, M., Esteban, J. A., Espinosa, V., & Miralles, R. (2019). Design and Application of a Passive Acoustic Monitoring System in the Spanish Implementation of the Marine Strategy Framework Directive. Proceedings of 6th International Electronic Conference on Sensors and Applications. doi:10.3390/ecsa-6-06568 es_ES
dc.description.references SAMARUC Webhttp://samaruc.webs.upv.es es_ES
dc.description.references Explora (Patents and Software) UPV Webhttps://aplicat.upv.es/exploraupv/ficha-tecnologia/patente_software/15065?busqueda=R-16202-2012 es_ES
dc.description.references Beghi, M. G. (Ed.). (2013). Modeling and Measurement Methods for Acoustic Waves and for Acoustic Microdevices. doi:10.5772/2581 es_ES
dc.description.references Oceans Physics at Your Fingertipshttps://www.emodnet-physics.eu/Map/ es_ES
dc.description.references Gridded Bathymetric Datahttps://www.gebco.net/data_and_products/gridded_bathymetry_data/ es_ES
dc.description.references Mackenzie, K. V. (1981). Nine‐term equation for sound speed in the oceans. The Journal of the Acoustical Society of America, 70(3), 807-812. doi:10.1121/1.386920 es_ES
dc.description.references Ross, D., & Kuperman, W. A. (1989). Mechanics of Underwater Noise. The Journal of the Acoustical Society of America, 86(4), 1626-1626. doi:10.1121/1.398685 es_ES
dc.description.references Gervaise, C., Kinda, B. G., Bonnel, J., Stéphan, Y., & Vallez, S. (2012). Passive geoacoustic inversion with a single hydrophone using broadband ship noise. The Journal of the Acoustical Society of America, 131(3), 1999-2010. doi:10.1121/1.3672688 es_ES
dc.description.references Crocker, S. E., Nielsen, P. L., Miller, J. H., & Siderius, M. (2014). Geoacoustic inversion of ship radiated noise in shallow water using data from a single hydrophone. The Journal of the Acoustical Society of America, 136(5), EL362-EL368. doi:10.1121/1.4898739 es_ES
dc.description.references Li, H., Yang, K., Duan, R., & Lei, Z. (2017). Joint Estimation of Source Range and Depth Using a Bottom-Deployed Vertical Line Array in Deep Water. Sensors, 17(6), 1315. doi:10.3390/s17061315 es_ES
dc.description.references Tong, J., Hu, Y.-H., Bao, M., & Xie, W. (2013). Target tracking using acoustic signatures of light-weight aircraft propeller noise. 2013 IEEE China Summit and International Conference on Signal and Information Processing. doi:10.1109/chinasip.2013.6625333 es_ES
dc.description.references Lo, K. W., Perry, S. W., & Ferguson, B. G. (2002). Aircraft flight parameter estimation using acoustical Lloyd’s mirror effect. IEEE Transactions on Aerospace and Electronic Systems, 38(1), 137-151. doi:10.1109/7.993235 es_ES
dc.description.references Miralles, R., Lara, G., Gosalbez, J., Bosch, I., & León, A. (2019). Improved visualization of large temporal series for the evaluation of good environmental status. Applied Acoustics, 148, 55-61. doi:10.1016/j.apacoust.2018.12.009 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem