- -

Comparison of Sentinel-2 and High-Resolution Imagery for Mapping Land Abandonment in Fragmented Areas

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparison of Sentinel-2 and High-Resolution Imagery for Mapping Land Abandonment in Fragmented Areas

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Morell-Monzó, Sergio es_ES
dc.contributor.author Estornell Cremades, Javier es_ES
dc.contributor.author Sebastiá-Frasquet, M.-T. es_ES
dc.date.accessioned 2021-05-27T03:35:56Z
dc.date.available 2021-05-27T03:35:56Z
dc.date.issued 2020-06 es_ES
dc.identifier.issn 2072-4292 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166852
dc.description.abstract [EN] Agricultural land abandonment is an important environmental issue in Europe. The proper management of agricultural areas has important implications for ecosystem services (food production, biodiversity, climate regulation and the landscape). In the coming years, an increase of abandoned areas is expected due to socio-economic changes. The identification and quantification of abandoned agricultural plots is key for monitoring this process and for applying management measures. The Valencian Region (Spain) is an important fruit and vegetable producing area in Europe, and it has the most important citrus industry. However, this agricultural sector is highly threatened by diverse factors, which have accelerated land abandonment. Landsat and MODIS satellite images have been used to map land abandonment. However, these images do not give good results in areas with high spatial fragmentation and small-sized agricultural plots. Sentinel-2 and airborne imagery shows unexplored potential to overcome this thanks to higher spatial resolutions. In this work, three models were compared for mapping abandoned plots using Sentinel-2 with 10 m bands, Sentinel-2 with 10 m and 20 m bands, and airborne imagery with 1 m visible and near-infrared bands. A pixel-based classification approach was used, applying the Random Forests algorithm. The algorithm was trained with 144 plots and 100 decision trees. The results were validated using the hold-out method with 96 independent plots. The most accurate map was obtained using airborne images, the Enhanced Vegetation Index (EVI) and Thiam's Transformed Vegetation Index (TTVI), with an overall accuracy of 88.5%. The map generated from Sentinel-2 images (10 m bands and the EVI and TTVI spectral indices) had an overall accuracy of 77.1%. Adding 20 m Sentinel-2 bands and the Normalized Difference Moisture Index (NDMI) did not improve the classification accuracy. According to the most accurate map, 4310 abandoned plots were detected in our study area, representing 32.5% of its agricultural surface. The proposed methodology proved to be useful for mapping citrus in highly fragmented areas, and it can be adapted to other crops. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Remote Sensing es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Citrus es_ES
dc.subject Land abandonment es_ES
dc.subject High-resolution imagery es_ES
dc.subject Sentinel-2 es_ES
dc.subject Image classification es_ES
dc.subject Random Forests algorithm es_ES
dc.subject Machine learning algorithms es_ES
dc.subject.classification INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Comparison of Sentinel-2 and High-Resolution Imagery for Mapping Land Abandonment in Fragmented Areas es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/rs12122062 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria es_ES
dc.description.bibliographicCitation Morell-Monzó, S.; Estornell Cremades, J.; Sebastiá-Frasquet, M. (2020). Comparison of Sentinel-2 and High-Resolution Imagery for Mapping Land Abandonment in Fragmented Areas. Remote Sensing. 12(12):1-18. https://doi.org/10.3390/rs12122062 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/rs12122062 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 12 es_ES
dc.relation.pasarela S\414501 es_ES
dc.description.references MacDonald, D., Crabtree, J. ., Wiesinger, G., Dax, T., Stamou, N., Fleury, P., … Gibon, A. (2000). Agricultural abandonment in mountain areas of Europe: Environmental consequences and policy response. Journal of Environmental Management, 59(1), 47-69. doi:10.1006/jema.1999.0335 es_ES
dc.description.references Kosmas, C., Kairis, O., Karavitis, C., Acikalin, S., Alcalá, M., Alfama, P., … Solé-Benet, A. (2015). An exploratory analysis of land abandonment drivers in areas prone to desertification. CATENA, 128, 252-261. doi:10.1016/j.catena.2014.02.006 es_ES
dc.description.references Corbelle Rico, E., & Crecente Maseda, R. (2018). Estudio da evolución da superficie agrícola na comarca da Terra Chá a partir de fotografía aérea histórica e mapas de usos, 1956-2004. Recursos Rurais, (4), 57-65. doi:10.15304/rr.id5312 es_ES
dc.description.references Gellrich, M., Baur, P., Koch, B., & Zimmermann, N. E. (2007). Agricultural land abandonment and natural forest re-growth in the Swiss mountains: A spatially explicit economic analysis. Agriculture, Ecosystems & Environment, 118(1-4), 93-108. doi:10.1016/j.agee.2006.05.001 es_ES
dc.description.references Rey Benayas, J. M. (2007). Abandonment of agricultural land: an overview of drivers and consequences. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2(057). doi:10.1079/pavsnnr20072057 es_ES
dc.description.references Árgyelán, T. (2015). Abandonment phenomenon in Europe. Acta Universitatis Sapientiae, Agriculture and Environment, 7(1), 89-97. doi:10.1515/ausae-2015-0008 es_ES
dc.description.references Citricultura Valenciana: Gestión Integrada de Plagas y Enfermedades en Cítricoshttp://gipcitricos.ivia.es/citricultura-valenciana es_ES
dc.description.references Rounsevell, M. D. A., Reginster, I., Araújo, M. B., Carter, T. R., Dendoncker, N., Ewert, F., … Tuck, G. (2006). A coherent set of future land use change scenarios for Europe. Agriculture, Ecosystems & Environment, 114(1), 57-68. doi:10.1016/j.agee.2005.11.027 es_ES
dc.description.references Verburg, P. H., Schulp, C. J. E., Witte, N., & Veldkamp, A. (2006). Downscaling of land use change scenarios to assess the dynamics of European landscapes. Agriculture, Ecosystems & Environment, 114(1), 39-56. doi:10.1016/j.agee.2005.11.024 es_ES
dc.description.references Dubinin, M., Potapov, P., Lushchekina, A., & Radeloff, V. C. (2010). Reconstructing long time series of burned areas in arid grasslands of southern Russia by satellite remote sensing. Remote Sensing of Environment, 114(8), 1638-1648. doi:10.1016/j.rse.2010.02.010 es_ES
dc.description.references Ruiz-Flan˜o, P., Garci´a-Ruiz, J. M., & Ortigosa, L. (1992). Geomorphological evolution of abandoned fields. A case study in the Central Pyrenees. CATENA, 19(3-4), 301-308. doi:10.1016/0341-8162(92)90004-u es_ES
dc.description.references Fischer, J., Hartel, T., & Kuemmerle, T. (2012). Conservation policy in traditional farming landscapes. Conservation Letters, 5(3), 167-175. doi:10.1111/j.1755-263x.2012.00227.x es_ES
dc.description.references Penov, I. (2004). The Use of Irrigation Water in Bulgaria’s Plovdiv Region During Transition. Environmental Management, 34(2), 304-313. doi:10.1007/s00267-004-0019-8 es_ES
dc.description.references Novara, A., Gristina, L., Sala, G., Galati, A., Crescimanno, M., Cerdà, A., … La Mantia, T. (2017). Agricultural land abandonment in Mediterranean environment provides ecosystem services via soil carbon sequestration. Science of The Total Environment, 576, 420-429. doi:10.1016/j.scitotenv.2016.10.123 es_ES
dc.description.references Cerdà, A., Ackermann, O., Terol, E., & Rodrigo-Comino, J. (2019). Impact of Farmland Abandonment on Water Resources and Soil Conservation in Citrus Plantations in Eastern Spain. Water, 11(4), 824. doi:10.3390/w11040824 es_ES
dc.description.references Rey Benayas, J. M., & Bullock, J. M. (2012). Restoration of Biodiversity and Ecosystem Services on Agricultural Land. Ecosystems, 15(6), 883-899. doi:10.1007/s10021-012-9552-0 es_ES
dc.description.references Shrivastava, R. J., & Gebelein, J. L. (2007). Land cover classification and economic assessment of citrus groves using remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 61(5), 341-353. doi:10.1016/j.isprsjprs.2006.10.003 es_ES
dc.description.references Löw, F., Prishchepov, A., Waldner, F., Dubovyk, O., Akramkhanov, A., Biradar, C., & Lamers, J. (2018). Mapping Cropland Abandonment in the Aral Sea Basin with MODIS Time Series. Remote Sensing, 10(2), 159. doi:10.3390/rs10020159 es_ES
dc.description.references Alcantara, C., Kuemmerle, T., Prishchepov, A. V., & Radeloff, V. C. (2012). Mapping abandoned agriculture with multi-temporal MODIS satellite data. Remote Sensing of Environment, 124, 334-347. doi:10.1016/j.rse.2012.05.019 es_ES
dc.description.references Estel, S., Kuemmerle, T., Alcántara, C., Levers, C., Prishchepov, A., & Hostert, P. (2015). Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series. Remote Sensing of Environment, 163, 312-325. doi:10.1016/j.rse.2015.03.028 es_ES
dc.description.references Dara, A., Baumann, M., Kuemmerle, T., Pflugmacher, D., Rabe, A., Griffiths, P., … Hostert, P. (2018). Mapping the timing of cropland abandonment and recultivation in northern Kazakhstan using annual Landsat time series. Remote Sensing of Environment, 213, 49-60. doi:10.1016/j.rse.2018.05.005 es_ES
dc.description.references Müller, D., Leitão, P. J., & Sikor, T. (2013). Comparing the determinants of cropland abandonment in Albania and Romania using boosted regression trees. Agricultural Systems, 117, 66-77. doi:10.1016/j.agsy.2012.12.010 es_ES
dc.description.references Yin, H., Prishchepov, A. V., Kuemmerle, T., Bleyhl, B., Buchner, J., & Radeloff, V. C. (2018). Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time series. Remote Sensing of Environment, 210, 12-24. doi:10.1016/j.rse.2018.02.050 es_ES
dc.description.references Kuemmerle, T., Hostert, P., Radeloff, V. C., van der Linden, S., Perzanowski, K., & Kruhlov, I. (2008). Cross-border Comparison of Post-socialist Farmland Abandonment in the Carpathians. Ecosystems, 11(4), 614-628. doi:10.1007/s10021-008-9146-z es_ES
dc.description.references Grădinaru, S. R., Kienast, F., & Psomas, A. (2019). Using multi-seasonal Landsat imagery for rapid identification of abandoned land in areas affected by urban sprawl. Ecological Indicators, 96, 79-86. doi:10.1016/j.ecolind.2017.06.022 es_ES
dc.description.references Prishchepov, A. V., Radeloff, V. C., Dubinin, M., & Alcantara, C. (2012). The effect of Landsat ETM/ETM + image acquisition dates on the detection of agricultural land abandonment in Eastern Europe. Remote Sensing of Environment, 126, 195-209. doi:10.1016/j.rse.2012.08.017 es_ES
dc.description.references Baumann, M., Kuemmerle, T., Elbakidze, M., Ozdogan, M., Radeloff, V. C., Keuler, N. S., … Hostert, P. (2011). Patterns and drivers of post-socialist farmland abandonment in Western Ukraine. Land Use Policy, 28(3), 552-562. doi:10.1016/j.landusepol.2010.11.003 es_ES
dc.description.references Szostak, M., Hawryło, P., & Piela, D. (2017). Using of Sentinel-2 images for automation of the forest succession detection. European Journal of Remote Sensing, 51(1), 142-149. doi:10.1080/22797254.2017.1412272 es_ES
dc.description.references Kanjir, U., Đurić, N., & Veljanovski, T. (2018). Sentinel-2 Based Temporal Detection of Agricultural Land Use Anomalies in Support of Common Agricultural Policy Monitoring. ISPRS International Journal of Geo-Information, 7(10), 405. doi:10.3390/ijgi7100405 es_ES
dc.description.references Proisy, C., Viennois, G., Sidik, F., Andayani, A., Enright, J. A., Guitet, S., … Suhardjono. (2018). Monitoring mangrove forests after aquaculture abandonment using time series of very high spatial resolution satellite images: A case study from the Perancak estuary, Bali, Indonesia. Marine Pollution Bulletin, 131, 61-71. doi:10.1016/j.marpolbul.2017.05.056 es_ES
dc.description.references Thanh Noi, P., & Kappas, M. (2017). Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors, 18(2), 18. doi:10.3390/s18010018 es_ES
dc.description.references Maxwell, A. E., Warner, T. A., & Fang, F. (2018). Implementation of machine-learning classification in remote sensing: an applied review. International Journal of Remote Sensing, 39(9), 2784-2817. doi:10.1080/01431161.2018.1433343 es_ES
dc.description.references https://rdrr.io/cran/raster/ es_ES
dc.description.references https://cran.r-project.org/web/packages/rgdal/index.html es_ES
dc.description.references Huete, A., Justice, C., & Liu, H. (1994). Development of vegetation and soil indices for MODIS-EOS. Remote Sensing of Environment, 49(3), 224-234. doi:10.1016/0034-4257(94)90018-3 es_ES
dc.description.references Wilson, E. H., & Sader, S. A. (2002). Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sensing of Environment, 80(3), 385-396. doi:10.1016/s0034-4257(01)00318-2 es_ES
dc.description.references Silleos, N. G., Alexandridis, T. K., Gitas, I. Z., & Perakis, K. (2006). Vegetation Indices: Advances Made in Biomass Estimation and Vegetation Monitoring in the Last 30 Years. Geocarto International, 21(4), 21-28. doi:10.1080/10106040608542399 es_ES
dc.description.references Huete, A. . (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295-309. doi:10.1016/0034-4257(88)90106-x es_ES
dc.description.references Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58(3), 289-298. doi:10.1016/s0034-4257(96)00072-7 es_ES
dc.description.references Breiman, L. (2001). Machine Learning, 45(1), 5-32. doi:10.1023/a:1010933404324 es_ES
dc.description.references Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2006). Random Forests for land cover classification. Pattern Recognition Letters, 27(4), 294-300. doi:10.1016/j.patrec.2005.08.011 es_ES
dc.description.references Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140. doi:10.1007/bf00058655 es_ES
dc.description.references Pal, M. (2005). Random forest classifier for remote sensing classification. International Journal of Remote Sensing, 26(1), 217-222. doi:10.1080/01431160412331269698 es_ES
dc.description.references Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., & Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148, 42-57. doi:10.1016/j.rse.2014.02.015 es_ES
dc.description.references Whiteside, T. G., Maier, S. W., & Boggs, G. S. (2014). Area-based and location-based validation of classified image objects. International Journal of Applied Earth Observation and Geoinformation, 28, 117-130. doi:10.1016/j.jag.2013.11.009 es_ES
dc.description.references Morell Monzó, S., & Membrado-Tena, J. C. (2019). Causas y consecuencias del crecimiento urbanístico en el litoral valenciano a través de la evolución de los usos del suelo. El caso de Oliva. Cuadernos de Turismo, (44), 303-326. doi:10.6018/turismo.44.404861 es_ES
dc.description.references Smith, P., House, J. I., Bustamante, M., Sobocká, J., Harper, R., Pan, G., … Pugh, T. A. M. (2015). Global change pressures on soils from land use and management. Global Change Biology, 22(3), 1008-1028. doi:10.1111/gcb.13068 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem