- -

Design with use of 3D printing technology

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Design with use of 3D printing technology

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author ROZMUS, M. es_ES
dc.contributor.author DOBRZANIECKI, P. es_ES
dc.contributor.author SIEGMUND, M. es_ES
dc.contributor.author Gómez Herrero, Juan Alfonso es_ES
dc.date.accessioned 2021-05-28T03:32:31Z
dc.date.available 2021-05-28T03:32:31Z
dc.date.issued 2020-12 es_ES
dc.identifier.issn 2299-0461 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166897
dc.description.abstract [EN] Dynamic development of 3D printing technology contributes to its wide applicability. FDM (Fused Deposition Method) is the most known and popular 3D printing method due to its availability and affordability. It is also usable in design of technical objects-to verify design concepts with use of 3D printed prototypes. The prototypes are produced at lower cost and shorter time comparing to other manufacturing methods and might be used for a number of purposes depending on designed object's features they reflect. In the article, usability of 3D printing method FDM for designing of technical objects is verified based on sample functional prototypes. Methodology applied to develop these prototypes and their stand tests are covered. General conclusion is that 3D printed prototypes manufactured with FDM method proved to be useful for verifying new concepts within design processes carried out in KOMAG. es_ES
dc.language Inglés es_ES
dc.publisher PA Nova es_ES
dc.relation.ispartof Management Systems in Production Engineering es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject 3D printing es_ES
dc.subject Additive manufacturing es_ES
dc.subject Design es_ES
dc.subject Design process es_ES
dc.subject FDM (Fused Deposition Method) es_ES
dc.subject Prototype es_ES
dc.title Design with use of 3D printing technology es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.2478/mspe-2020-0040 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Rozmus, M.; Dobrzaniecki, P.; Siegmund, M.; Gómez Herrero, JA. (2020). Design with use of 3D printing technology. Management Systems in Production Engineering. 28(4):283-291. https://doi.org/10.2478/mspe-2020-0040 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.2478/mspe-2020-0040 es_ES
dc.description.upvformatpinicio 283 es_ES
dc.description.upvformatpfin 291 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 28 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\432009 es_ES
dc.description.references [1] A. Alafaghani, A. Qattawi. “Investigating the effect of fused deposition modeling processing parameters using Taguchi design of experiment method.” Journal of Manufacturing Processes, vol. 36, pp. 164-174, Dec. 2018 es_ES
dc.description.references [2] D. Bałaga, M. Kalita, M. Siegmund. „Use of 3D additive manufacturing technology for rapid prototyping of spraying nozzles”. Mining Machines, vol. 3 pp. 3-13, Sep. 2017. es_ES
dc.description.references [3] C. Baletti, M. Ballarin, F. Guerra. “3D printing: State of the art and future perspectives.” Journal of Cultural Heritage, vol. 26, pp. 172-182, Mar. 2017 es_ES
dc.description.references [4] C. Buchanan, L. Gardner. “Metal 3D printing in construction: a review of methods research, applications, opportunities and challenges.” Engineering Structures, vol. 180, pp. 332-348, Feb. 2019. es_ES
dc.description.references [5] J. M. Chacon, M. A. Caminero, E. Garcia-Plaza, P. J. Nunez. “Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection.” Materials and Design, vol. 124, pp. 143-157, Jun. 2017. es_ES
dc.description.references [6] P. Dobrzaniecki, M. Kalita. „Possibility of using the neodymium magnets in machines and equipment clutches”, Mining Machines, vol. 4, pp. 27-38, Dec. 2018. es_ES
dc.description.references [7] S. Ford, T. Minshall. “Invited review article: Where and how 3D printing is used in teaching and education.” Additive Manufacturing, vol. 25, pp. 131-150, Jan. 2019. es_ES
dc.description.references [8] A.W. Gebisa, H. G. Lemu. “Influence of 3D Printing FDM Process Parameters on Tensile Property of ULTEM 9085.”, Procedia Manufacturing, vol. 30, pp. 331-338, Jan. 2019. es_ES
dc.description.references [9] A. Gisario, M. Kazarian, F. Martina, M. Mehrpouya. “Metal additive manufacturing in the commercial aviation industry: A review.” Journal of Manufacturing Systems, vol. 53, pp. 124-149, Oct. 2019. es_ES
dc.description.references [10] T.W. Kerekes, H. Lim, W. Y. Joe, G. J. Yun. “Characterization of process-deformation/damage property relationship for fused deposition modelling (FDM) 3D-printed specimens.” Additive Manufacturing vol. 25, pp. 532-544, Dec. 2018 es_ES
dc.description.references [11] K.G. Mostafa, C. Montemagno, A.J. Qureshi. “Strength to cost ratio analysis of FDM Nylon 12 3D Printed Parts.” Procedia Manufacturing, vol. 26, pp. 753-762, 2018. es_ES
dc.description.references [12] T.D. Ngo, A. Kashani, G. Imbalzano, K.T. Nguyen, D. Hui. “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges.” Composites Part B: Engineering, vol. 43, pp. 172-196, Jun. 2018. es_ES
dc.description.references [13] D. Prostański. “Dust control with use of air-water spraying system.” Archives of Mining Sciences, vol. 57(4), pp. 975-990, Dec. 2012. es_ES
dc.description.references [14] Y. Qian et al. “A Review of 3D Printing Technology for Medical Applications.” Engineering, vol. 4(5), pp. 729-742, Oct. 2018. es_ES
dc.description.references [15] N. Shahrubudin, T.C. Lee, R. Ramlan. “An Overview on 3D Printing Technology: Technological, Materials, and Applications.” Procedia Manufacturing, vol. 35, pp. 1286-1296, 2019. es_ES
dc.description.references [16] A. Sheoran, H.Kumar. “Fused Deposition modeling process parameters optimization and effect on mechanical properties and part quality: Review and reflection on present research.” Materials Today: Proceedings, vol. 21, pp. 1659-1672. Dec. 2019. es_ES
dc.description.references [17] M. Siegmund, D. Bałaga, M. Kalita. „Testing the parameters of spraying stream form fine-drops nozzles”. Mining Machines, vol. 3 pp. 3-13, Sep. 2018. es_ES
dc.description.references [18] S. Singh, S. Ramakrishna, R. Singh. “Material issues in additive manufacturing; a review.” Journal of Manufacturing Processes, vol. 25, pp. 185-200, Dec. 2016. es_ES
dc.description.references [19] M. Snopczyński, J. Kotliński, I. Musiałek. “Testing of mechanical properties of materials used in FDM technology.” Mechanik, vol. 4, pp. 285-287, Apr. 2019. es_ES
dc.description.references [20] M. Upadhyay, T. Sivarupan, M.E. Mansori. “3D printing for rapid sand casting – A review.” Journal of Manufacturing Processes, vol. 29, pp. 211-220, Oct. 2017. es_ES
dc.description.references [21] P. Wang, B. Zou, H. Xiao, S. Ding, C. Huang. “Effects of printing parameters of fused deposition modelling on mechanical properties, surface quality, and microstructure of PEEK.” Journal of Materials Processing Technology, vol. 271, pp. 62-74, Sep. 2019. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem