Mostrar el registro sencillo del ítem
dc.contributor.author | Martín Furones, Ángel Esteban | es_ES |
dc.contributor.author | Ibañez Asensio, Sara | es_ES |
dc.contributor.author | Baixauli, Carlos | es_ES |
dc.contributor.author | Blanc Clavero, Sara | es_ES |
dc.contributor.author | Anquela Julián, Ana Belén | es_ES |
dc.date.accessioned | 2021-05-28T03:33:30Z | |
dc.date.available | 2021-05-28T03:33:30Z | |
dc.date.issued | 2020-07-15 | es_ES |
dc.identifier.issn | 1027-5606 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166904 | |
dc.description.abstract | [EN] Per capita arable land is decreasing due to the rapidly increasing population, and fresh water is becoming scarce and more expensive. Therefore, farmers should continue to use technology and innovative solutions to improve efficiency, save input costs, and optimise environmental resources (such as water). In the case study presented in this paper, the Global Navigation Satellite System interferometric reflectometry (GNSS-IR) technique was used to monitor soil moisture during 66¿d, from 3 December 2018 to 6 February 2019, in the installations of the Cajamar Centre of Experiences, Paiporta, Valencia, Spain. Two main objectives were pursued. The first was the extension of the technique to a multi-constellation solution using GPS, GLONASS, and GALILEO satellites, and the second was to test whether mass-market sensors could be used for this technique. Both objectives were achieved. At the same time that the GNSS observations were made, soil samples taken at 5¿cm depth were used for soil moisture determination to establish a reference data set. Based on a comparison with that reference data set, all GNSS solutions, including the three constellations and the two sensors (geodetic and mass market), were highly correlated, with a correlation coefficient between 0.7 and 0.85. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | EUROPEAN GEOSCIENCES UNION | es_ES |
dc.relation.ispartof | Hydrology and Earth System Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | GNSS-IR reflectometry | es_ES |
dc.subject | Signal to noise ratio (SNR) | es_ES |
dc.subject | Remote sensing | es_ES |
dc.subject | Soil moisture | es_ES |
dc.subject.classification | PRODUCCION VEGETAL | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.subject.classification | INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA | es_ES |
dc.title | Multi-constellation GNSS interferometric reflectometry with mass-market sensors as a solution for soil moisture monitoring | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.5194/hess-24-3573-2020 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal | es_ES |
dc.description.bibliographicCitation | Martín Furones, ÁE.; Ibañez Asensio, S.; Baixauli, C.; Blanc Clavero, S.; Anquela Julián, AB. (2020). Multi-constellation GNSS interferometric reflectometry with mass-market sensors as a solution for soil moisture monitoring. Hydrology and Earth System Sciences. 24(7):3573-3582. https://doi.org/10.5194/hess-24-3573-2020 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.5194/hess-24-3573-2020 | es_ES |
dc.description.upvformatpinicio | 3573 | es_ES |
dc.description.upvformatpfin | 3582 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 7 | es_ES |
dc.relation.pasarela | S\416075 | es_ES |
dc.description.references | Chan, S. K., Bindlish, R., O'Neill, P. E., Njoku, E., Jackson, T., Colliander, A., Chen, F., Burgin, M., Dunbar, S., Piepmeier, J., Yueh, S., Entekhabi, D., Cosh, M. H., Caldwell, T., Walker, J., Wu, X., Berg, A., Rowlandson, T., Pacheco, A., McNairn, H., Thibeault, M., Martiìnez-Fernaìndez, J., Gonzaìlez-Zamora, A., Seyfried, M., Bosch, D., Starks, P., Goodrich, D., Prueger, J., Palecki, M., Small, E. E., Zreda, M., Calvet, J.-C., Crow, W., and Kerr, Y.: Assessment of the SMAP passive soil moisture product, IEEE T. Geosci. Remote, 54, 4994–5007, 2016. | es_ES |
dc.description.references | Chen, Q., Won, D., Akos, D. M., and Small, E. E.: Vegetation using GPS interferometric reflectometry: experimental results with a horizontal polarized antenna, IEEE J. Sel. Top. Appl., 9, 4771–4780, 2016. | es_ES |
dc.description.references | Chew, C. C., Small, E. E., Larson, K. M., and Zavorotny, V. U.: Effects of near-surface soil moisture on GPS SNR data: development and retrieval algorithm for soil moisture, IEEE T. Geosci. Remote, 52, 537–543, 2014. | es_ES |
dc.description.references | Chew, C. C., Small, E. E., Larson, K. M., and Zavorotny, U.Z.: Vegetation sensing using GPS-interferometric reflectometry: theoretical effects of canopy parameters on signal-to-noise ratio data, IEEE T. Geosci. Remote, 53, 2755–2764, 2015. | es_ES |
dc.description.references | Chew, C. C., Small, E. E., and Larson, K. M.: An algorithm for soil moisture estimation using GPS-interferometric reflectometry for bare and vegetated soil, GPS Solut., 20, 525–537, 2016. | es_ES |
dc.description.references | Hofmann-Wellenhof, B., Lichtenegger, H., and Wasle, E.: GNSS Global Navigation Satellite Systems, GPS, GLONASS, GALILEO and more, Springer, Vienna, Austria, New York, USA, 2008. | es_ES |
dc.description.references | Katzberg, S. J., Torres, O., Grant, M. S., and Masters, D.: Utilizing calibrated GPS reflected signals to estimate soil reflectivity and dielectric constant: results from SMEX02, Remote Sens. Environ., 100, 17–28, 2005. | es_ES |
dc.description.references | Kerr, Y., Waldteufel, P., Wigneron, J., Martinuzzi, J., Font, J., and Berger, M.: Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission, IEEE T. Geosci. Remote, 39, 1729–1735, 2001. | es_ES |
dc.description.references | Larson, K. M. and Nievinski, F. G.: GPS snow sensing: results from the EarthScope plate boundary observatory, GPS Solut., 17, 41–52, 2013. | es_ES |
dc.description.references | Larson, K. M., Small, E. E., Gutmann, E. D., Bilich, A. L., Axelrad, A., and Braun, J. J.: Using GPS multipath to measure soil moisture fluctuations: initial results, GPS Solut., 12, 173–177, 2008a. | es_ES |
dc.description.references | Larson, K. M., Small, E. E., Gutmann, E. D., Bilich, A. L., Braun, J. J., and Zavorotny, V. U.: Use of GPS receivers as a soil moisture network for water cycle studies, Geophys. Res. Lett., 35, L24405, https://doi.org/10.1029/2008GL036013, 2008b. | es_ES |
dc.description.references | Larson, K. M., Braun, J. J., Small, E. E., and Zavorotny, V. U.: GPS multipath and its relation to near-surface soil moisture content, IEEE J. Sel. Top. Appl., 3, 91–99, 2010. | es_ES |
dc.description.references | Leick, A., Rapoport, L., and Tatarnikov, D.: GPS satellite surveying, 4th edn., John Wiley & Sons, Hoboken, New Jersey, USA, 840 pp., 2015. | es_ES |
dc.description.references | Li, G. and Geng, J.: Characteristics of raw multi-GNSS measurement error from Google Android smart devices, GPS Solut., 23, 1–5, https://doi.org/10.1007/s10291-019-0885-4, 2019. | es_ES |
dc.description.references | Lomb, N. R.: Least-squares frequency – Analysis of unequally spaced data, Astrophys. Space Sci., 39, 447–462, 1976. | es_ES |
dc.description.references | Masters, D., Axelrad, P., and Katzberg, S.: Initial results of land-reflected GPS bistatic radar measurements in SMEX02, Remote Sens. Environ., 92, 507–520, 2002. | es_ES |
dc.description.references | Mattia, F., Balenzano, A., Satalino, G., Lovergine, F., Peng, J., Wegmuller, U., Cartus, O., Davidson, M. W. J., Ki<span id="page3582"/>m S., Johnson, J., Walker, J., Wu, X., Pauwels, V. R. N., McNairn, H., Caldwell, T., Cosh, M., and Jackson, T.: Sentinel-1 &amp; Sentinel-2 for SOIL Moisture Retrieval at Field Scale, IGARSS 2018–2018, IEEE I. Geosci. Rem. Sens. Symposium, 22–27 July 2018, Valencia, Spain, 6143–6146, https://doi.org/10.1109/IGARSS.2018.8518170, 2018. | es_ES |
dc.description.references | Press, W. H., Teukolsky, S. S., Vetterling, W. T., and Flannery, B. P.: Numerical recipes in Fortran 77, vol. 1, 2nd edn., Cambirdge University Press, New York, USA, 569–573, 1992. | es_ES |
dc.description.references | Roesler, C. and Larson, K. M.: Software tools for GNSS interferometric reflectometry (GNSS-IR), GPS Solut., 22, 80, https://doi.org/10.1007/s10291-018-0744-8, 2018. | es_ES |
dc.description.references | Roussel, N., Frappart, F., Ramillien, G., Darroes, J., Baup, F., Lestarquit, L., and Ha, M. C.: Detection of soil moisture variations using GPS and GLONASS SNR data for elevation angles ranging from 2∘ to 70∘, IEEE J. Sel. Top. Appl., 9, 4781–4794, 2016. | es_ES |
dc.description.references | Small, E. E., Larson, K. M., Chew, C. C., Dong, J., and Ochsner, T. E.: Validation of GPS-IR soil moisture retrievals: comparison of different algorithms to remove vegetation effects, IEEE J. Sel. Top. Appl., 9, 4759–4770, 2016. | es_ES |
dc.description.references | Strang, G. and Borre, K.: Linear algebra, Geodesy and GPS, Wellesley-Cambride Press, 624 pp., available at: https://www.unavco.org/data/gps-gnss/derived-products/pbo-h2o/documentation/documentation.html#soil (last access: 18 December 2019), 1997. | es_ES |
dc.description.references | Vey, S., Güntner, A., Wickert, J., Blume, T., and Ramatschi, M.: Long-term soil moisture dynamics derived from GNSS interferometric reflectometry: a case study for Sutherland, South Africa, GPS Solut., 20, 641–654, https://doi.org/10.1007/s10291-015-0474-0, 2016. | es_ES |
dc.description.references | Wan, W., Larson, K. M., Small, E. E., Chew, C. C., and Braun, J. J.: Using geodetic GPS receivers to measure vegetation water content, GPS Solut., 19, 237–248, 2015. | es_ES |
dc.description.references | Zavorotny, V. U., Masters, D., Gasiewski, A., Bartram, B., Katzberg, S., Aselrad, P., and Zamora, R.: Seasonal polarimetric measurements of soil moisture using tower-based GPS bistatic radar, IGARSS 2003, 2003 IEEE International Geoscience and Remote Sensing Symposium, Proceedings (IEEE Cat. No.03CH37477), Toulouse, France, 2003, vol. 2, 781–783, https://doi.org/10.1109/IGARSS.2003.1293916, 2003. | es_ES |
dc.description.references | Zhang, S., Roussel, N., Boniface, K., Ha, M. C., Frappart, F., Darrozes, J., Baup, F., and Calvet, J.-C.: Use of reflected GNSS SNR data to retrieve either soil moisture or vegetation height from a wheat crop, Hydrol. Earth Syst. Sci., 21, 4767–4784, https://doi.org/10.5194/hess-21-4767-2017, 2017. | es_ES |
dc.subject.ods | 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos | es_ES |
dc.subject.ods | 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible | es_ES |
dc.subject.ods | 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos | es_ES |