Mostrar el registro sencillo del ítem
dc.contributor.author | Morillo, Pedro | es_ES |
dc.contributor.author | García García, Inmaculada | es_ES |
dc.contributor.author | Orduña, Juan M. | es_ES |
dc.contributor.author | Fernández, Marcos | es_ES |
dc.contributor.author | Juan, M.-Carmen | es_ES |
dc.date.accessioned | 2021-05-28T03:33:39Z | |
dc.date.available | 2021-05-28T03:33:39Z | |
dc.date.issued | 2020-03 | es_ES |
dc.identifier.issn | 1380-7501 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166906 | |
dc.description.abstract | [EN] Augmented Reality (AR) has become a mainstream technology in the development of solutions for repair and maintenance operations. Although most of the AR solutions are still limited to specific contexts in industry, some consumer electronics companies have started to offer pre-packaged AR solutions as alternative to video-based tutorials (VT) for minor maintenance operations. In this paper, we present a comparative study of the acquired knowledge and user perception achieved with AR and VT solutions in some maintenance tasks of IT equipment. The results indicate that both systems help users to acquire knowledge in various aspects of equipment maintenance. Although no statistically significant differences were found between AR and VT solutions, users scored higher on the AR version in all cases. Moreover, the users explicitly preferred the AR version when evaluating three different usability and satisfaction criteria. For the AR version, a strong and significant correlation was found between the satisfaction and the achieved knowledge. Since the AR solution achieved similar learning results with higher usability scores than the video-based tutorials, these results suggest that AR solutions are the most effective approach to substitute the typical paper-based instructions in consumer electronics. | es_ES |
dc.description.sponsorship | This work has been supported by Spanish MINECO and EU ERDF programs under grant RTI2018-098156-B-C55. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Multimedia Tools and Applications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Augmented Reality | es_ES |
dc.subject | Comparative study | es_ES |
dc.subject | Real user study | es_ES |
dc.subject | Multimedia-based learning | es_ES |
dc.subject | Equipment maintenance | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Comparative study of AR versus video tutorials for minor maintenance operations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11042-019-08437-9 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098156-B-C55/ES/MEJORA DE APLICACIONES BIOINFORMATICAS, PROYECCION INMERSIVA Y SERVICIOS CLOUD/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Morillo, P.; García García, I.; Orduña, JM.; Fernández, M.; Juan, M. (2020). Comparative study of AR versus video tutorials for minor maintenance operations. Multimedia Tools and Applications. 79(11-12):7073-7100. https://doi.org/10.1007/s11042-019-08437-9 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11042-019-08437-9 | es_ES |
dc.description.upvformatpinicio | 7073 | es_ES |
dc.description.upvformatpfin | 7100 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 79 | es_ES |
dc.description.issue | 11-12 | es_ES |
dc.relation.pasarela | S\400874 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Ahn J, Williamson J, Gartrell M, Han R, Lv Q, Mishra S (2015) Supporting healthy grocery shopping via mobile augmented reality. ACM Trans Multimedia Comput Commun Appl 12(1s):16:1–16:24. https://doi.org/10.1145/2808207 | es_ES |
dc.description.references | Anderson TW (2011) Anderson–darling tests of goodness-of-fit. Springer, Berlin, pp 52–54. https://doi.org/10.1007/978-3-642-04898-2_118 | es_ES |
dc.description.references | Awad N, Lewandowski SE, Decker EW (2015) Event management system for facilitating user interactions at a venue. US Patent App. 14/829,382 | es_ES |
dc.description.references | Azuma R (1997) A survey of augmented reality. Presence: Teleoperators and Virtual Environments 6(4):355–385 | es_ES |
dc.description.references | Baird K, Barfield W (1999) Evaluating the effectiveness of augmented reality displays for a manual assembly task. Virtual Reality 4:250–259 | es_ES |
dc.description.references | Ballo P (2018) Hardware and software for ar/vr development. In: Augmented and virtual reality in libraries, pp 45–55. LITA guides | es_ES |
dc.description.references | Barrile V, Fotia A, Bilotta G (2018) Geomatics and augmented reality experiments for the cultural heritage. Applied Geomatics. https://doi.org/10.1007/s12518-018-0231-5 | es_ES |
dc.description.references | Billinghurst M, Duenser A (2012) Augmented reality in the classroom. Computer 45(7):56–63. https://doi.org/10.1109/MC.2012.111 | es_ES |
dc.description.references | Bowman DA, McMahan RP (2007) Virtual reality: how much immersion is enough? Computer 40(7) | es_ES |
dc.description.references | Brown TA (2015) Confirmatory factor analysis for applied research. Guilford Publications | es_ES |
dc.description.references | Dodge Y. (ed) (2008) Kruskal-Wallis test. Springer, New York. https://doi.org/10.1007/978-0-387-32833-1_216 | es_ES |
dc.description.references | Elmunsyah H, Hidayat WN, Asfani K (2019) Interactive learning media innovation: utilization of augmented reality and pop-up book to improve user’s learning autonomy. J Phys Conf Ser 1193(012):031. https://doi.org/10.1088/1742-6596/1193/1/012031 | es_ES |
dc.description.references | Entertainment L (2017) Dolphin Player. https://play.google.com/store/apps/details?id=com.broov.player. Online; Accessed 09-September-2017 | es_ES |
dc.description.references | Fletcher J, Belanich J, Moses F, Fehr A, Moss J (2017) Effectiveness of augmented reality & augmented virtuality. In: MODSIM Modeling & simulation of systems and applications) world conference | es_ES |
dc.description.references | Fraga-Lamas P, Fernández-Caramés TM, Blanco-Novoa O, Vilar-Montesinos MA (2018) A review on industrial augmented reality systems for the industry 4.0 shipyard. IEEE Access 6:13,358–13,375. https://doi.org/10.1109/ACCESS.2018.2808326 | es_ES |
dc.description.references | Furió D, Juan MC, Seguí I, Vivó R (2015) Mobile learning vs. traditional classroom lessons: a comparative study. J Comput Assist Learn 31(3):189–201. https://doi.org/10.1111/jcal.12071 | es_ES |
dc.description.references | Gavish N, Gutiérrez T, Webel S, Rodríguez J, Peveri M, Bockholt U, Tecchia F (2015) Evaluating virtual reality and augmented reality training for industrial maintenance and assembly tasks. Interact Learn Environ 23(6):778–798. https://doi.org/10.1080/10494820.2013.815221 | es_ES |
dc.description.references | Gimeno J, Morillo P, Orduña JM, Fernández M (2013) A new ar authoring tool using depth maps for industrial procedures. Comput Ind 64(9):1263–1271. https://doi.org/10.1016/j.compind.2013.06.012 | es_ES |
dc.description.references | Holzinger A, Kickmeier-Rust MD, Albert D (2008) Dynamic media in computer science education; content complexity and learning performance: is less more? Educational Technology & Society 11(1):279–290 | es_ES |
dc.description.references | Hornbaek K (2013) Some whys and hows of experiments in human–computer interaction. Foundations and TrendsⓇ in Human–Computer Interaction 5(4):299–373. https://doi.org/10.1561/1100000043 | es_ES |
dc.description.references | Huang J, Liu S, Xing J, Mei T, Yan S (2014) Circle & search: Attribute-aware shoe retrieval. ACM Trans Multimedia Comput Commun Appl 11 (1):3:1–3:21. https://doi.org/10.1145/2632165 | es_ES |
dc.description.references | Jiang S, Wu Y, Fu Y (2018) Deep bidirectional cross-triplet embedding for online clothing shopping. ACM Trans Multimedia Comput Commun Appl 14(1):5:1–5:22. https://doi.org/10.1145/3152114 | es_ES |
dc.description.references | Kim SK, Kang SJ, Choi YJ, Choi MH, Hong M (2017) Augmented-reality survey: from concept to application. KSII Transactions on Internet and Information Systems 11:982–1004. https://doi.org/10.3837/tiis.2017.02.019 | es_ES |
dc.description.references | Langlotz T, Zingerle M, Grasset R, Kaufmann H, Reitmayr G (2012) Ar record&replay: Situated compositing of video content in mobile augmented reality. In: Proceedings of the 24th Australian Computer-Human Interaction Conference, OzCHI ’12. ACM, New York, pp 318–326, DOI https://doi.org/10.1145/2414536.2414588, (to appear in print) | es_ES |
dc.description.references | Martin-SanJose JF, Juan MC, Mollá R, Vivó R (2017) Advanced displays and natural user interfaces to support learning. Interact Learn Environ 25(1):17–34. https://doi.org/10.1080/10494820.2015.1090455 | es_ES |
dc.description.references | Massey FJ (1951) The kolmogorov-Smirnov test for goodness of fit. J Am Stat Assoc 46(253):68–78 | es_ES |
dc.description.references | van der Meij H, van der Meij J, Voerman T, Duipmans E (2018) Supporting motivation, task performance and retention in video tutorials for software training. Educ Technol Res Dev 66(3):597–614. https://doi.org/10.1007/s11423-017-9560-z | es_ES |
dc.description.references | van der Meij J, van der Meij H (2015) A test of the design of a video tutorial for software training. J Comput Assist Learn 31 (2):116–132. https://doi.org/10.1111/jcal.12082 | es_ES |
dc.description.references | Mestre LS (2012) Student preference for tutorial design: a usability study. Ref Serv Rev 40(2):258–276. https://doi.org/10.1108/00907321211228318 | es_ES |
dc.description.references | Mohr P, Kerbl B, Donoser M, Schmalstieg D, Kalkofen D (2015) Retargeting technical documentation to augmented reality. In: Proceedings of the 33rd annual ACM conference on human factors in computing systems, CHI ’15. ACM, New York, pp 3337–3346, DOI https://doi.org/10.1145/2702123.2702490, (to appear in print) | es_ES |
dc.description.references | Mohr P, Mandl D, Tatzgern M, Veas E, Schmalstieg D, Kalkofen D (2017) Retargeting video tutorials showing tools with surface contact to augmented reality. In: Proceedings of the 2017 CHI conference on human factors in computing systems, CHI ’17. ACM, New York, pp 6547–6558, DOI https://doi.org/10.1145/3025453.3025688, (to appear in print) | es_ES |
dc.description.references | Montgomery DC, Runger GC (2003) Applied statistics and probability for engineers. Wiley, New York | es_ES |
dc.description.references | Morillo P, Orduña JM, Casas S, Fernández M (2019) A comparison study of ar applications versus pseudo-holographic systems as virtual exhibitors for luxury watch retail stores. Multimedia Systems. https://doi.org/10.1007/s00530-019-00606-y | es_ES |
dc.description.references | Morse JM (2000) Determining sample size. Qual Health Res 10(1):3–5. https://doi.org/10.1177/104973200129118183 | es_ES |
dc.description.references | Muñoz-Montoya F, Juan M, Mendez-Lopez M, Fidalgo C (2019) Augmented reality based on slam to assess spatial short-term memory. IEEE Access 7:2453–2466. https://doi.org/10.1109/ACCESS.2018.2886627 | es_ES |
dc.description.references | Neuhäuser M (2011) Wilcoxon–Mann–Whitney test. Springer, Berlin, pp 1656–1658 | es_ES |
dc.description.references | Neumann U, Majoros A (1998) Cognitive, performance, and systems issues for augmented reality applications in manufacturing and maintenance. In: Inproceedings of the IEEE virtual reality annual international symposium (VR ’98), pp 4–11 | es_ES |
dc.description.references | no JJA, Juan MC, Gil-Gómez JA, Mollá R. (2014) A comparative study using an autostereoscopic display with augmented and virtual reality. Behaviour & Information Technology 33(6):646–655. https://doi.org/10.1080/0144929X.2013.815277 | es_ES |
dc.description.references | Palmarini R, Erkoyuncu JA, Roy R, Torabmostaedi H (2018) A systematic review of augmented reality applications in maintenance. Robot Comput Integr Manuf 49:215–228 | es_ES |
dc.description.references | Quint F, Loch F (2015) Using smart glasses to document maintenance processes. Mensch und Computer 2015–Workshopband | es_ES |
dc.description.references | Radkowski R, Herrema J, Oliver J (2015) Augmented reality-based manual assembly support with visual features for different degrees of difficulty. International Journal of Human–Computer Interaction 31(5):337–349. https://doi.org/10.1080/10447318.2014.994194 | es_ES |
dc.description.references | Regenbrecht H, Schubert T (2002) Measuring presence in augmented reality environments: design and a first test of a questionnaire, Porto, Portugal | es_ES |
dc.description.references | Robertson J (2012) Likert-type scales, statistical methods, and effect sizes. Commun ACM 55(5):6–7. https://doi.org/10.1145/2160718.2160721 | es_ES |
dc.description.references | Rodríguez-Andrés D, Juan MC, Méndez-López M, Pérez-Hernández E, Lluch J (2016) Mnemocity task: Assessment of childrens spatial memory using stereoscopy and virtual environments. PLos ONE 1(8). https://doi.org/10.1371/journal.pone.0161858 | es_ES |
dc.description.references | Sanna A, Manuri F, Lamberti F, Paravati G, Pezzolla P (2015) Using handheld devices to support augmented reality-based maintenance and assembly tasks. In: 2015 IEEE International conference on consumer electronics (ICCE), pp. 178–179. https://doi.org/10.1109/ICCE.2015.7066370 | es_ES |
dc.description.references | Schmidt S, Ehrenbrink P, Weiss B, Voigt-Antons J, Kojic T, Johnston A, Moller S (2018) Impact of virtual environments on motivation and engagement during exergames. In: 2018 Tenth international conference on quality of multimedia experience (qoMEX), pp 1–6. https://doi.org/10.1109/QoMEX.2018.8463389 | es_ES |
dc.description.references | Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52(3/4):591–611 | es_ES |
dc.description.references | Tang A, Owen C, Biocca F, Mou W (2003) Comparative effectiveness of augmented reality in object assembly. In: Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’03. ACM, New York, pp 73–80, DOI https://doi.org/10.1145/642611.642626, (to appear in print) | es_ES |
dc.description.references | Tomás JM, Oliver A, Galiana L, Sancho P, Lila M (2013) Explaining method effects associated with negatively worded items in trait and state global and domain-specific self-esteem scales. Structural Equation Modeling: A Multidisciplinary Journal 20(2):299–313. https://doi.org/10.1080/10705511.2013.769394 | es_ES |
dc.description.references | Uva AE, Gattullo M, Manghisi VM, Spagnulo D, Cascella GL, Fiorentino M (2017) Evaluating the effectiveness of spatial augmented reality in smart manufacturing: a solution for manual working stations. The Int J Adv Manuf Technol: 1–13 | es_ES |
dc.description.references | Wang X, Ong SK, Nee AYC (2016) A comprehensive survey of augmented reality assembly research. Advances in Manufacturing 4(1):1–22. https://doi.org/10.1007/s40436-015-0131-4 | es_ES |
dc.description.references | Westerfield G, Mitrovic A, Billinghurst M (2015) Intelligent augmented reality training for motherboard assembly. Int J Artif Intell Educ 25(1):157–172. https://doi.org/10.1007/s40593-014-0032-x | es_ES |
dc.description.references | Wiedenmaier S, Oehme O, Schmidt L, Luczak H (2003) Augmented reality (ar) for assembly processes - design and experimental evaluation. International Journal of Human-Computer Interaction 16(3):497–514 | es_ES |
dc.description.references | Witmer BG, Singer MJ (1998) Measuring presence in virtual environments: a presence questionnaire. Presence: Teleoperators and Virtual Environments 7(3):225–240 | es_ES |
dc.description.references | Wu HK, Lee SWY, Chang HY, Liang JC (2013) Current status, opportunities and challenges of augmented reality in education. Computers & Education 62:41–49. https://doi.org/10.1016/j.compedu.2012.10.024 | es_ES |
dc.description.references | Yim MYC, Chu SC, Sauer PL (2017) Is augmented reality technology an effective tool for e-commerce? an interactivity and vividness perspective. Journal of Interactive Marketing 39(http://www.sciencedirect.com/science/article/pii/S1094996817300336):89–103. https://doi.org/10.1016/j.intmar.2017.04.001 | es_ES |
dc.description.references | Yuan ML, Ong SK, Nee AYC (2008) Augmented reality for assembly guidance using a virtual interactive tool. Int J Prod Res 46(7):1745–1767. https://doi.org/10.1080/00207540600972935 | es_ES |