- -

Comparative study of AR versus video tutorials for minor maintenance operations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparative study of AR versus video tutorials for minor maintenance operations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Morillo, Pedro es_ES
dc.contributor.author García García, Inmaculada es_ES
dc.contributor.author Orduña, Juan M. es_ES
dc.contributor.author Fernández, Marcos es_ES
dc.contributor.author Juan, M.-Carmen es_ES
dc.date.accessioned 2021-05-28T03:33:39Z
dc.date.available 2021-05-28T03:33:39Z
dc.date.issued 2020-03 es_ES
dc.identifier.issn 1380-7501 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166906
dc.description.abstract [EN] Augmented Reality (AR) has become a mainstream technology in the development of solutions for repair and maintenance operations. Although most of the AR solutions are still limited to specific contexts in industry, some consumer electronics companies have started to offer pre-packaged AR solutions as alternative to video-based tutorials (VT) for minor maintenance operations. In this paper, we present a comparative study of the acquired knowledge and user perception achieved with AR and VT solutions in some maintenance tasks of IT equipment. The results indicate that both systems help users to acquire knowledge in various aspects of equipment maintenance. Although no statistically significant differences were found between AR and VT solutions, users scored higher on the AR version in all cases. Moreover, the users explicitly preferred the AR version when evaluating three different usability and satisfaction criteria. For the AR version, a strong and significant correlation was found between the satisfaction and the achieved knowledge. Since the AR solution achieved similar learning results with higher usability scores than the video-based tutorials, these results suggest that AR solutions are the most effective approach to substitute the typical paper-based instructions in consumer electronics. es_ES
dc.description.sponsorship This work has been supported by Spanish MINECO and EU ERDF programs under grant RTI2018-098156-B-C55. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Multimedia Tools and Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Augmented Reality es_ES
dc.subject Comparative study es_ES
dc.subject Real user study es_ES
dc.subject Multimedia-based learning es_ES
dc.subject Equipment maintenance es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Comparative study of AR versus video tutorials for minor maintenance operations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11042-019-08437-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098156-B-C55/ES/MEJORA DE APLICACIONES BIOINFORMATICAS, PROYECCION INMERSIVA Y SERVICIOS CLOUD/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Morillo, P.; García García, I.; Orduña, JM.; Fernández, M.; Juan, M. (2020). Comparative study of AR versus video tutorials for minor maintenance operations. Multimedia Tools and Applications. 79(11-12):7073-7100. https://doi.org/10.1007/s11042-019-08437-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11042-019-08437-9 es_ES
dc.description.upvformatpinicio 7073 es_ES
dc.description.upvformatpfin 7100 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 79 es_ES
dc.description.issue 11-12 es_ES
dc.relation.pasarela S\400874 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Ahn J, Williamson J, Gartrell M, Han R, Lv Q, Mishra S (2015) Supporting healthy grocery shopping via mobile augmented reality. ACM Trans Multimedia Comput Commun Appl 12(1s):16:1–16:24. https://doi.org/10.1145/2808207 es_ES
dc.description.references Anderson TW (2011) Anderson–darling tests of goodness-of-fit. Springer, Berlin, pp 52–54. https://doi.org/10.1007/978-3-642-04898-2_118 es_ES
dc.description.references Awad N, Lewandowski SE, Decker EW (2015) Event management system for facilitating user interactions at a venue. US Patent App. 14/829,382 es_ES
dc.description.references Azuma R (1997) A survey of augmented reality. Presence: Teleoperators and Virtual Environments 6(4):355–385 es_ES
dc.description.references Baird K, Barfield W (1999) Evaluating the effectiveness of augmented reality displays for a manual assembly task. Virtual Reality 4:250–259 es_ES
dc.description.references Ballo P (2018) Hardware and software for ar/vr development. In: Augmented and virtual reality in libraries, pp 45–55. LITA guides es_ES
dc.description.references Barrile V, Fotia A, Bilotta G (2018) Geomatics and augmented reality experiments for the cultural heritage. Applied Geomatics. https://doi.org/10.1007/s12518-018-0231-5 es_ES
dc.description.references Billinghurst M, Duenser A (2012) Augmented reality in the classroom. Computer 45(7):56–63. https://doi.org/10.1109/MC.2012.111 es_ES
dc.description.references Bowman DA, McMahan RP (2007) Virtual reality: how much immersion is enough? Computer 40(7) es_ES
dc.description.references Brown TA (2015) Confirmatory factor analysis for applied research. Guilford Publications es_ES
dc.description.references Dodge Y. (ed) (2008) Kruskal-Wallis test. Springer, New York. https://doi.org/10.1007/978-0-387-32833-1_216 es_ES
dc.description.references Elmunsyah H, Hidayat WN, Asfani K (2019) Interactive learning media innovation: utilization of augmented reality and pop-up book to improve user’s learning autonomy. J Phys Conf Ser 1193(012):031. https://doi.org/10.1088/1742-6596/1193/1/012031 es_ES
dc.description.references Entertainment L (2017) Dolphin Player. https://play.google.com/store/apps/details?id=com.broov.player. Online; Accessed 09-September-2017 es_ES
dc.description.references Fletcher J, Belanich J, Moses F, Fehr A, Moss J (2017) Effectiveness of augmented reality & augmented virtuality. In: MODSIM Modeling & simulation of systems and applications) world conference es_ES
dc.description.references Fraga-Lamas P, Fernández-Caramés TM, Blanco-Novoa O, Vilar-Montesinos MA (2018) A review on industrial augmented reality systems for the industry 4.0 shipyard. IEEE Access 6:13,358–13,375. https://doi.org/10.1109/ACCESS.2018.2808326 es_ES
dc.description.references Furió D, Juan MC, Seguí I, Vivó R (2015) Mobile learning vs. traditional classroom lessons: a comparative study. J Comput Assist Learn 31(3):189–201. https://doi.org/10.1111/jcal.12071 es_ES
dc.description.references Gavish N, Gutiérrez T, Webel S, Rodríguez J, Peveri M, Bockholt U, Tecchia F (2015) Evaluating virtual reality and augmented reality training for industrial maintenance and assembly tasks. Interact Learn Environ 23(6):778–798. https://doi.org/10.1080/10494820.2013.815221 es_ES
dc.description.references Gimeno J, Morillo P, Orduña JM, Fernández M (2013) A new ar authoring tool using depth maps for industrial procedures. Comput Ind 64(9):1263–1271. https://doi.org/10.1016/j.compind.2013.06.012 es_ES
dc.description.references Holzinger A, Kickmeier-Rust MD, Albert D (2008) Dynamic media in computer science education; content complexity and learning performance: is less more? Educational Technology & Society 11(1):279–290 es_ES
dc.description.references Hornbaek K (2013) Some whys and hows of experiments in human–computer interaction. Foundations and TrendsⓇ in Human–Computer Interaction 5(4):299–373. https://doi.org/10.1561/1100000043 es_ES
dc.description.references Huang J, Liu S, Xing J, Mei T, Yan S (2014) Circle & search: Attribute-aware shoe retrieval. ACM Trans Multimedia Comput Commun Appl 11 (1):3:1–3:21. https://doi.org/10.1145/2632165 es_ES
dc.description.references Jiang S, Wu Y, Fu Y (2018) Deep bidirectional cross-triplet embedding for online clothing shopping. ACM Trans Multimedia Comput Commun Appl 14(1):5:1–5:22. https://doi.org/10.1145/3152114 es_ES
dc.description.references Kim SK, Kang SJ, Choi YJ, Choi MH, Hong M (2017) Augmented-reality survey: from concept to application. KSII Transactions on Internet and Information Systems 11:982–1004. https://doi.org/10.3837/tiis.2017.02.019 es_ES
dc.description.references Langlotz T, Zingerle M, Grasset R, Kaufmann H, Reitmayr G (2012) Ar record&replay: Situated compositing of video content in mobile augmented reality. In: Proceedings of the 24th Australian Computer-Human Interaction Conference, OzCHI ’12. ACM, New York, pp 318–326, DOI https://doi.org/10.1145/2414536.2414588, (to appear in print) es_ES
dc.description.references Martin-SanJose JF, Juan MC, Mollá R, Vivó R (2017) Advanced displays and natural user interfaces to support learning. Interact Learn Environ 25(1):17–34. https://doi.org/10.1080/10494820.2015.1090455 es_ES
dc.description.references Massey FJ (1951) The kolmogorov-Smirnov test for goodness of fit. J Am Stat Assoc 46(253):68–78 es_ES
dc.description.references van der Meij H, van der Meij J, Voerman T, Duipmans E (2018) Supporting motivation, task performance and retention in video tutorials for software training. Educ Technol Res Dev 66(3):597–614. https://doi.org/10.1007/s11423-017-9560-z es_ES
dc.description.references van der Meij J, van der Meij H (2015) A test of the design of a video tutorial for software training. J Comput Assist Learn 31 (2):116–132. https://doi.org/10.1111/jcal.12082 es_ES
dc.description.references Mestre LS (2012) Student preference for tutorial design: a usability study. Ref Serv Rev 40(2):258–276. https://doi.org/10.1108/00907321211228318 es_ES
dc.description.references Mohr P, Kerbl B, Donoser M, Schmalstieg D, Kalkofen D (2015) Retargeting technical documentation to augmented reality. In: Proceedings of the 33rd annual ACM conference on human factors in computing systems, CHI ’15. ACM, New York, pp 3337–3346, DOI https://doi.org/10.1145/2702123.2702490, (to appear in print) es_ES
dc.description.references Mohr P, Mandl D, Tatzgern M, Veas E, Schmalstieg D, Kalkofen D (2017) Retargeting video tutorials showing tools with surface contact to augmented reality. In: Proceedings of the 2017 CHI conference on human factors in computing systems, CHI ’17. ACM, New York, pp 6547–6558, DOI https://doi.org/10.1145/3025453.3025688, (to appear in print) es_ES
dc.description.references Montgomery DC, Runger GC (2003) Applied statistics and probability for engineers. Wiley, New York es_ES
dc.description.references Morillo P, Orduña JM, Casas S, Fernández M (2019) A comparison study of ar applications versus pseudo-holographic systems as virtual exhibitors for luxury watch retail stores. Multimedia Systems. https://doi.org/10.1007/s00530-019-00606-y es_ES
dc.description.references Morse JM (2000) Determining sample size. Qual Health Res 10(1):3–5. https://doi.org/10.1177/104973200129118183 es_ES
dc.description.references Muñoz-Montoya F, Juan M, Mendez-Lopez M, Fidalgo C (2019) Augmented reality based on slam to assess spatial short-term memory. IEEE Access 7:2453–2466. https://doi.org/10.1109/ACCESS.2018.2886627 es_ES
dc.description.references Neuhäuser M (2011) Wilcoxon–Mann–Whitney test. Springer, Berlin, pp 1656–1658 es_ES
dc.description.references Neumann U, Majoros A (1998) Cognitive, performance, and systems issues for augmented reality applications in manufacturing and maintenance. In: Inproceedings of the IEEE virtual reality annual international symposium (VR ’98), pp 4–11 es_ES
dc.description.references no JJA, Juan MC, Gil-Gómez JA, Mollá R. (2014) A comparative study using an autostereoscopic display with augmented and virtual reality. Behaviour & Information Technology 33(6):646–655. https://doi.org/10.1080/0144929X.2013.815277 es_ES
dc.description.references Palmarini R, Erkoyuncu JA, Roy R, Torabmostaedi H (2018) A systematic review of augmented reality applications in maintenance. Robot Comput Integr Manuf 49:215–228 es_ES
dc.description.references Quint F, Loch F (2015) Using smart glasses to document maintenance processes. Mensch und Computer 2015–Workshopband es_ES
dc.description.references Radkowski R, Herrema J, Oliver J (2015) Augmented reality-based manual assembly support with visual features for different degrees of difficulty. International Journal of Human–Computer Interaction 31(5):337–349. https://doi.org/10.1080/10447318.2014.994194 es_ES
dc.description.references Regenbrecht H, Schubert T (2002) Measuring presence in augmented reality environments: design and a first test of a questionnaire, Porto, Portugal es_ES
dc.description.references Robertson J (2012) Likert-type scales, statistical methods, and effect sizes. Commun ACM 55(5):6–7. https://doi.org/10.1145/2160718.2160721 es_ES
dc.description.references Rodríguez-Andrés D, Juan MC, Méndez-López M, Pérez-Hernández E, Lluch J (2016) Mnemocity task: Assessment of childrens spatial memory using stereoscopy and virtual environments. PLos ONE 1(8). https://doi.org/10.1371/journal.pone.0161858 es_ES
dc.description.references Sanna A, Manuri F, Lamberti F, Paravati G, Pezzolla P (2015) Using handheld devices to support augmented reality-based maintenance and assembly tasks. In: 2015 IEEE International conference on consumer electronics (ICCE), pp. 178–179. https://doi.org/10.1109/ICCE.2015.7066370 es_ES
dc.description.references Schmidt S, Ehrenbrink P, Weiss B, Voigt-Antons J, Kojic T, Johnston A, Moller S (2018) Impact of virtual environments on motivation and engagement during exergames. In: 2018 Tenth international conference on quality of multimedia experience (qoMEX), pp 1–6. https://doi.org/10.1109/QoMEX.2018.8463389 es_ES
dc.description.references Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52(3/4):591–611 es_ES
dc.description.references Tang A, Owen C, Biocca F, Mou W (2003) Comparative effectiveness of augmented reality in object assembly. In: Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’03. ACM, New York, pp 73–80, DOI https://doi.org/10.1145/642611.642626, (to appear in print) es_ES
dc.description.references Tomás JM, Oliver A, Galiana L, Sancho P, Lila M (2013) Explaining method effects associated with negatively worded items in trait and state global and domain-specific self-esteem scales. Structural Equation Modeling: A Multidisciplinary Journal 20(2):299–313. https://doi.org/10.1080/10705511.2013.769394 es_ES
dc.description.references Uva AE, Gattullo M, Manghisi VM, Spagnulo D, Cascella GL, Fiorentino M (2017) Evaluating the effectiveness of spatial augmented reality in smart manufacturing: a solution for manual working stations. The Int J Adv Manuf Technol: 1–13 es_ES
dc.description.references Wang X, Ong SK, Nee AYC (2016) A comprehensive survey of augmented reality assembly research. Advances in Manufacturing 4(1):1–22. https://doi.org/10.1007/s40436-015-0131-4 es_ES
dc.description.references Westerfield G, Mitrovic A, Billinghurst M (2015) Intelligent augmented reality training for motherboard assembly. Int J Artif Intell Educ 25(1):157–172. https://doi.org/10.1007/s40593-014-0032-x es_ES
dc.description.references Wiedenmaier S, Oehme O, Schmidt L, Luczak H (2003) Augmented reality (ar) for assembly processes - design and experimental evaluation. International Journal of Human-Computer Interaction 16(3):497–514 es_ES
dc.description.references Witmer BG, Singer MJ (1998) Measuring presence in virtual environments: a presence questionnaire. Presence: Teleoperators and Virtual Environments 7(3):225–240 es_ES
dc.description.references Wu HK, Lee SWY, Chang HY, Liang JC (2013) Current status, opportunities and challenges of augmented reality in education. Computers & Education 62:41–49. https://doi.org/10.1016/j.compedu.2012.10.024 es_ES
dc.description.references Yim MYC, Chu SC, Sauer PL (2017) Is augmented reality technology an effective tool for e-commerce? an interactivity and vividness perspective. Journal of Interactive Marketing 39(http://www.sciencedirect.com/science/article/pii/S1094996817300336):89–103. https://doi.org/10.1016/j.intmar.2017.04.001 es_ES
dc.description.references Yuan ML, Ong SK, Nee AYC (2008) Augmented reality for assembly guidance using a virtual interactive tool. Int J Prod Res 46(7):1745–1767. https://doi.org/10.1080/00207540600972935 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem