- -

EHRtemporalVariability: delineating temporal data-set shifts in electronic health records

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

EHRtemporalVariability: delineating temporal data-set shifts in electronic health records

Show full item record

Sáez Silvestre, C.; Gutiérrez-Sacristán, A.; Kohane, I.; Garcia-Gomez, JM.; Avillach, P. (2020). EHRtemporalVariability: delineating temporal data-set shifts in electronic health records. GigaScience. 9(8):1-7. https://doi.org/10.1093/gigascience/giaa079

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166908

Files in this item

Item Metadata

Title: EHRtemporalVariability: delineating temporal data-set shifts in electronic health records
Author: Sáez Silvestre, Carlos Gutiérrez-Sacristán, Alba Kohane, Isaac Garcia-Gomez, Juan M Avillach, Paul
UPV Unit: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Issued date:
Abstract:
[EN] Background: Temporal variability in health-care processes or protocols is intrinsic to medicine. Such variability can potentially introduce dataset shifts, a data quality issue when reusing electronic health records ...[+]
Subjects: Data-set shifts , Data quality , Temporal variability , Scientific data sets , Electronic health records , Claims data , Research repositories , Information geometry , Visual analytics , R package
Copyrigths: Reserva de todos los derechos
Source:
GigaScience. (eissn: 2047-217X )
DOI: 10.1093/gigascience/giaa079
Publisher:
Oxford University Press
Publisher version: https://doi.org/10.1093/gigascience/giaa079
Project ID:
info:eu-repo/grantAgreement/EC/H2020/727560/EU/Collective wisdom driving public health policies/
info:eu-repo/grantAgreement/UPV//PAID-00-17/
info:eu-repo/grantAgreement/EC/H2020/825750/EU/Patient-centred pathways of early palliative care, supportive ecosystems and appraisal standard/
Thanks:
This work was supported by Universitat Politecnica de Valencia grant PAID-00-17, Generalitat Valenciana grant BEST/2018, and projects H2020-SC1-2016-CNECT No. 727560 and H2020-SC1-BHC-2018-2020 No. 825750
Type: Artículo

References

Gewin, V. (2016). Data sharing: An open mind on open data. Nature, 529(7584), 117-119. doi:10.1038/nj7584-117a

Katzan, I. L., & Rudick, R. A. (2012). Time to Integrate Clinical and Research Informatics. Science Translational Medicine, 4(162). doi:10.1126/scitranslmed.3004583

Zhu, L., & Zheng, W. J. (2018). Informatics, Data Science, and Artificial Intelligence. JAMA, 320(11), 1103. doi:10.1001/jama.2018.8211 [+]
Gewin, V. (2016). Data sharing: An open mind on open data. Nature, 529(7584), 117-119. doi:10.1038/nj7584-117a

Katzan, I. L., & Rudick, R. A. (2012). Time to Integrate Clinical and Research Informatics. Science Translational Medicine, 4(162). doi:10.1126/scitranslmed.3004583

Zhu, L., & Zheng, W. J. (2018). Informatics, Data Science, and Artificial Intelligence. JAMA, 320(11), 1103. doi:10.1001/jama.2018.8211

Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine Learning in Medicine. New England Journal of Medicine, 380(14), 1347-1358. doi:10.1056/nejmra1814259

Andreu-Perez, J., Poon, C. C. Y., Merrifield, R. D., Wong, S. T. C., & Yang, G.-Z. (2015). Big Data for Health. IEEE Journal of Biomedical and Health Informatics, 19(4), 1193-1208. doi:10.1109/jbhi.2015.2450362

Sáez, C., Rodrigues, P. P., Gama, J., Robles, M., & García-Gómez, J. M. (2014). Probabilistic change detection and visualization methods for the assessment of temporal stability in biomedical data quality. Data Mining and Knowledge Discovery, 29(4), 950-975. doi:10.1007/s10618-014-0378-6

Schlegel, D. R., & Ficheur, G. (2017). Secondary Use of Patient Data: Review of the Literature Published in 2016. Yearbook of Medical Informatics, 26(01), 68-71. doi:10.15265/iy-2017-032

Agniel, D., Kohane, I. S., & Weber, G. M. (2018). Biases in electronic health record data due to processes within the healthcare system: retrospective observational study. BMJ, k1479. doi:10.1136/bmj.k1479

Sáez, C., & García-Gómez, J. M. (2018). Kinematics of Big Biomedical Data to characterize temporal variability and seasonality of data repositories: Functional Data Analysis of data temporal evolution over non-parametric statistical manifolds. International Journal of Medical Informatics, 119, 109-124. doi:10.1016/j.ijmedinf.2018.09.015

Leek, J. T., Scharpf, R. B., Bravo, H. C., Simcha, D., Langmead, B., Johnson, W. E., … Irizarry, R. A. (2010). Tackling the widespread and critical impact of batch effects in high-throughput data. Nature Reviews Genetics, 11(10), 733-739. doi:10.1038/nrg2825

Goh, W. W. B., Wang, W., & Wong, L. (2017). Why Batch Effects Matter in Omics Data, and How to Avoid Them. Trends in Biotechnology, 35(6), 498-507. doi:10.1016/j.tibtech.2017.02.012

Sáez, C., Zurriaga, O., Pérez-Panadés, J., Melchor, I., Robles, M., & García-Gómez, J. M. (2016). Applying probabilistic temporal and multisite data quality control methods to a public health mortality registry in Spain: a systematic approach to quality control of repositories. Journal of the American Medical Informatics Association, 23(6), 1085-1095. doi:10.1093/jamia/ocw010

Wright, A., Ash, J. S., Aaron, S., Ai, A., Hickman, T.-T. T., Wiesen, J. F., … Sittig, D. F. (2018). Best practices for preventing malfunctions in rule-based clinical decision support alerts and reminders: Results of a Delphi study. International Journal of Medical Informatics, 118, 78-85. doi:10.1016/j.ijmedinf.2018.08.001

Moreno-Torres, J. G., Raeder, T., Alaiz-Rodríguez, R., Chawla, N. V., & Herrera, F. (2012). A unifying view on dataset shift in classification. Pattern Recognition, 45(1), 521-530. doi:10.1016/j.patcog.2011.06.019

Svolba, G., & Bauer, P. (1999). Statistical Quality Control in Clinical Trials. Controlled Clinical Trials, 20(6), 519-530. doi:10.1016/s0197-2456(99)00029-x

Bray, F., & Parkin, D. M. (2009). Evaluation of data quality in the cancer registry: Principles and methods. Part I: Comparability, validity and timeliness. European Journal of Cancer, 45(5), 747-755. doi:10.1016/j.ejca.2008.11.032

Springate, D. A., Parisi, R., Olier, I., Reeves, D., & Kontopantelis, E. (2017). rEHR: An R package for manipulating and analysing Electronic Health Record data. PLOS ONE, 12(2), e0171784. doi:10.1371/journal.pone.0171784

Choi, L., Carroll, R. J., Beck, C., Mosley, J. D., Roden, D. M., Denny, J. C., & Van Driest, S. L. (2018). Evaluating statistical approaches to leverage large clinical datasets for uncovering therapeutic and adverse medication effects. Bioinformatics, 34(17), 2988-2996. doi:10.1093/bioinformatics/bty306

Gutiérrez-Sacristán, A., Bravo, À., Giannoula, A., Mayer, M. A., Sanz, F., & Furlong, L. I. (2018). comoRbidity: an R package for the systematic analysis of disease comorbidities. Bioinformatics, 34(18), 3228-3230. doi:10.1093/bioinformatics/bty315

Denny, J. C., Bastarache, L., Ritchie, M. D., Carroll, R. J., Zink, R., Mosley, J. D., … Roden, D. M. (2013). Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nature Biotechnology, 31(12), 1102-1111. doi:10.1038/nbt.2749

Khera, R., Dorsey, K. B., & Krumholz, H. M. (2018). Transition to the ICD-10 in the United States. JAMA, 320(2), 133. doi:10.1001/jama.2018.6823

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record