- -

Relevance of Nrf2 and heme oxygenase-1 in articular diseases

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Relevance of Nrf2 and heme oxygenase-1 in articular diseases

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alcaraz Tormo, María José es_ES
dc.contributor.author Ferrándiz Manglano, María Luisa es_ES
dc.date.accessioned 2021-05-28T03:34:02Z
dc.date.available 2021-05-28T03:34:02Z
dc.date.issued 2020-09 es_ES
dc.identifier.issn 0891-5849 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166910
dc.description.abstract [EN] Joint conditions pose an important public health problem as they are a leading cause of pain, functional limitation and physical disability. Oxidative stress is related to the pathogenesis of many chronic diseases affecting the joints such as rheumatoid arthritis and osteoarthritis. Cells have developed adaptive protection mechanisms to maintain homeostasis such as nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) which regulates the transcription of many genes involved in redox balance, detoxification, metabolism and inflammation. Activation of Nrf2 results in the synthesis of heme oxygenase-1 (HO-1) leading to the formation of a number of bioactive metabolites, mainly CO, biliverdin and bilirubin. Ample evidence supports the notion that Nrf2 and HO-1 can confer protection against oxidative stress and inflammatory and immune responses in joint tissues. As a consequence, this pathway may control the activation and metabolism of articular cells to play a regulatory role in joint destruction thus offering new opportunities for better treatments. Further studies are necessary to identify improved strategies to regulate Nrf2 and HO-1 activation in order to enable the development of drugs with therapeutic applications in joint diseases. es_ES
dc.description.sponsorship This work has been funded by grant SAF2017-85806-R (MINECO, FEDER, Spain). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Free Radical Biology and Medicine es_ES
dc.rights Reserva de todos los derechos es_ES
dc.title Relevance of Nrf2 and heme oxygenase-1 in articular diseases es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.freeradbiomed.2019.12.007 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/SAF2017-85806-R/ES/MECANISMOS REGULADORES DE LA INFLAMACION Y SU RESOLUCION EN ENFERMEDADES CRONICAS ARTICULARES Y DE LA PIEL/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.description.bibliographicCitation Alcaraz Tormo, MJ.; Ferrándiz Manglano, ML. (2020). Relevance of Nrf2 and heme oxygenase-1 in articular diseases. Free Radical Biology and Medicine. 157:83-93. https://doi.org/10.1016/j.freeradbiomed.2019.12.007 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.freeradbiomed.2019.12.007 es_ES
dc.description.upvformatpinicio 83 es_ES
dc.description.upvformatpfin 93 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 157 es_ES
dc.identifier.pmid 31830562 es_ES
dc.relation.pasarela S\436556 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Itoh, K., Igarashi, K., Hayashi, N., Nishizawa, M., & Yamamoto, M. (1995). Cloning and characterization of a novel erythroid cell-derived CNC family transcription factor heterodimerizing with the small Maf family proteins. Molecular and Cellular Biology, 15(8), 4184-4193. doi:10.1128/mcb.15.8.4184 es_ES
dc.description.references Tebay, L. E., Robertson, H., Durant, S. T., Vitale, S. R., Penning, T. M., Dinkova-Kostova, A. T., & Hayes, J. D. (2015). Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radical Biology and Medicine, 88, 108-146. doi:10.1016/j.freeradbiomed.2015.06.021 es_ES
dc.description.references Hirotsu, Y., Katsuoka, F., Funayama, R., Nagashima, T., Nishida, Y., Nakayama, K., … Yamamoto, M. (2012). Nrf2–MafG heterodimers contribute globally to antioxidant and metabolic networks. Nucleic Acids Research, 40(20), 10228-10239. doi:10.1093/nar/gks827 es_ES
dc.description.references Ma, Q. (2013). Role of Nrf2 in Oxidative Stress and Toxicity. Annual Review of Pharmacology and Toxicology, 53(1), 401-426. doi:10.1146/annurev-pharmtox-011112-140320 es_ES
dc.description.references Cuadrado, A., Manda, G., Hassan, A., Alcaraz, M. J., Barbas, C., Daiber, A., … Schmidt, H. H. H. W. (2018). Transcription Factor NRF2 as a Therapeutic Target for Chronic Diseases: A Systems Medicine Approach. Pharmacological Reviews, 70(2), 348-383. doi:10.1124/pr.117.014753 es_ES
dc.description.references Gozzelino, R., Jeney, V., & Soares, M. P. (2010). Mechanisms of Cell Protection by Heme Oxygenase-1. Annual Review of Pharmacology and Toxicology, 50(1), 323-354. doi:10.1146/annurev.pharmtox.010909.105600 es_ES
dc.description.references Barañano, D. E., Wolosker, H., Bae, B.-I., Barrow, R. K., Snyder, S. H., & Ferris, C. D. (2000). A Mammalian Iron ATPase Induced by Iron. Journal of Biological Chemistry, 275(20), 15166-15173. doi:10.1074/jbc.275.20.15166 es_ES
dc.description.references Wu, L., & Wang, R. (2005). Carbon Monoxide: Endogenous Production, Physiological Functions, and Pharmacological Applications. Pharmacological Reviews, 57(4), 585-630. doi:10.1124/pr.57.4.3 es_ES
dc.description.references Ryter, S. W., & Choi, A. M. K. (2009). Heme Oxygenase-1/Carbon Monoxide. American Journal of Respiratory Cell and Molecular Biology, 41(3), 251-260. doi:10.1165/rcmb.2009-0170tr es_ES
dc.description.references Choi, A. M. K., & Otterbein, L. E. (2002). Emerging Role of Carbon Monoxide in Physiologic and Pathophysiologic States. Antioxidants & Redox Signaling, 4(2), 227-228. doi:10.1089/152308602753666271 es_ES
dc.description.references Alam, J., & Cook, J. L. (2007). How Many Transcription Factors Does It Take to Turn On the Heme Oxygenase-1 Gene? American Journal of Respiratory Cell and Molecular Biology, 36(2), 166-174. doi:10.1165/rcmb.2006-0340tr es_ES
dc.description.references Sudan, K., Vijayan, V., Madyaningrana, K., Gueler, F., Igarashi, K., Foresti, R., … Immenschuh, S. (2019). TLR4 activation alters labile heme levels to regulate BACH1 and heme oxygenase-1 expression in macrophages. Free Radical Biology and Medicine, 137, 131-142. doi:10.1016/j.freeradbiomed.2019.04.024 es_ES
dc.description.references Carta, S., Castellani, P., Delfino, L., Tassi, S., Venè, R., & Rubartelli, A. (2009). DAMPs and inflammatory processes: the role of redox in the different outcomes. Journal of Leukocyte Biology, 86(3), 549-555. doi:10.1189/jlb.1008598 es_ES
dc.description.references Afonina, I. S., Zhong, Z., Karin, M., & Beyaert, R. (2017). Limiting inflammation—the negative regulation of NF-κB and the NLRP3 inflammasome. Nature Immunology, 18(8), 861-869. doi:10.1038/ni.3772 es_ES
dc.description.references Barreiro, O., Martin, P., Gonzalez-Amaro, R., & Sanchez-Madrid, F. (2010). Molecular cues guiding inflammatory responses. Cardiovascular Research, 86(2), 174-182. doi:10.1093/cvr/cvq001 es_ES
dc.description.references Soares, M. P., Seldon, M. P., Gregoire, I. P., Vassilevskaia, T., Berberat, P. O., Yu, J., … Bach, F. H. (2004). Heme Oxygenase-1 Modulates the Expression of Adhesion Molecules Associated with Endothelial Cell Activation. The Journal of Immunology, 172(6), 3553-3563. doi:10.4049/jimmunol.172.6.3553 es_ES
dc.description.references Banning, A., & Brigelius-Flohé, R. (2005). NF-κB, Nrf2, and HO-1 Interplay in Redox-Regulated VCAM-1 Expression. Antioxidants & Redox Signaling, 7(7-8), 889-899. doi:10.1089/ars.2005.7.889 es_ES
dc.description.references Freitas, A., Alves-Filho, J. C., Secco, D. D., Neto, A. F., Ferreira, S. H., Barja-Fidalgo, C., & Cunha, F. Q. (2006). Heme oxygenase/carbon monoxide-biliverdin pathway down regulates neutrophil rolling, adhesion and migration in acute inflammation. British Journal of Pharmacology, 149(4), 345-354. doi:10.1038/sj.bjp.0706882 es_ES
dc.description.references Brigelius-Flohé, R., & Flohé, L. (2011). Basic Principles and Emerging Concepts in the Redox Control of Transcription Factors. Antioxidants & Redox Signaling, 15(8), 2335-2381. doi:10.1089/ars.2010.3534 es_ES
dc.description.references Ahmed, S. M. U., Luo, L., Namani, A., Wang, X. J., & Tang, X. (2017). Nrf2 signaling pathway: Pivotal roles in inflammation. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1863(2), 585-597. doi:10.1016/j.bbadis.2016.11.005 es_ES
dc.description.references Wardyn, J. D., Ponsford, A. H., & Sanderson, C. M. (2015). Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochemical Society Transactions, 43(4), 621-626. doi:10.1042/bst20150014 es_ES
dc.description.references Alcaraz, M., Fernandez, P., & Guillen, M. (2003). Anti-Inflammatory Actions of the Heme Oxygenase-1 Pathway. Current Pharmaceutical Design, 9(30), 2541-2551. doi:10.2174/1381612033453749 es_ES
dc.description.references Chen, X.-L., Dodd, G., Thomas, S., Zhang, X., Wasserman, M. A., Rovin, B. H., & Kunsch, C. (2006). Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression. American Journal of Physiology-Heart and Circulatory Physiology, 290(5), H1862-H1870. doi:10.1152/ajpheart.00651.2005 es_ES
dc.description.references Keshavan, P., Deem, T. L., Schwemberger, S. J., Babcock, G. F., Cook-Mills, J. M., & Zucker, S. D. (2005). Unconjugated Bilirubin Inhibits VCAM-1-Mediated Transendothelial Leukocyte Migration. The Journal of Immunology, 174(6), 3709-3718. doi:10.4049/jimmunol.174.6.3709 es_ES
dc.description.references Kobayashi, E. H., Suzuki, T., Funayama, R., Nagashima, T., Hayashi, M., Sekine, H., … Yamamoto, M. (2016). Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nature Communications, 7(1). doi:10.1038/ncomms11624 es_ES
dc.description.references Hull, T. D., Agarwal, A., & George, J. F. (2014). The Mononuclear Phagocyte System in Homeostasis and Disease: A Role for Heme Oxygenase-1. Antioxidants & Redox Signaling, 20(11), 1770-1788. doi:10.1089/ars.2013.5673 es_ES
dc.description.references Haschemi, A., Wagner, O., Marculescu, R., Wegiel, B., Robson, S. C., Gagliani, N., … Otterbein, L. E. (2007). Cross-Regulation of Carbon Monoxide and the Adenosine A2a Receptor in Macrophages. The Journal of Immunology, 178(9), 5921-5929. doi:10.4049/jimmunol.178.9.5921 es_ES
dc.description.references Chiang, N., Shinohara, M., Dalli, J., Mirakaj, V., Kibi, M., Choi, A. M. K., & Serhan, C. N. (2013). Inhaled Carbon Monoxide Accelerates Resolution of Inflammation via Unique Proresolving Mediator–Heme Oxygenase-1 Circuits. The Journal of Immunology, 190(12), 6378-6388. doi:10.4049/jimmunol.1202969 es_ES
dc.description.references Cheng, X., He, S., Yuan, J., Miao, S., Gao, H., Zhang, J., … Wu, P. (2016). Lipoxin A4 attenuates LPS-induced mouse acute lung injury via Nrf2-mediated E-cadherin expression in airway epithelial cells. Free Radical Biology and Medicine, 93, 52-66. doi:10.1016/j.freeradbiomed.2016.01.026 es_ES
dc.description.references Goronzy, J. J., & Weyand, C. M. (2009). Developments in the scientific understanding of rheumatoid arthritis. Arthritis Research & Therapy, 11(5), 249. doi:10.1186/ar2758 es_ES
dc.description.references Smallwood, M. J., Nissim, A., Knight, A. R., Whiteman, M., Haigh, R., & Winyard, P. G. (2018). Oxidative stress in autoimmune rheumatic diseases. Free Radical Biology and Medicine, 125, 3-14. doi:10.1016/j.freeradbiomed.2018.05.086 es_ES
dc.description.references Miesel, R., Murphy, M. P., & Kröger, H. (1996). Enhanced Mitochondrial Radical Production in Patients with Rheumatoid Arthritis Correlates with Elevated Levels of Tumor Necrosis Factor alpha in Plasma. Free Radical Research, 25(2), 161-169. doi:10.3109/10715769609149921 es_ES
dc.description.references Biniecka, M., Kennedy, A., Ng, C. T., Chang, T. C., Balogh, E., Fox, E., … O’Sullivan, J. N. (2011). Successful tumour necrosis factor (TNF) blocking therapy suppresses oxidative stress and hypoxia-induced mitochondrial mutagenesis in inflammatory arthritis. Arthritis Research & Therapy, 13(4), R121. doi:10.1186/ar3424 es_ES
dc.description.references Hirao, M., Yamasaki, N., Oze, H., Ebina, K., Nampei, A., Kawato, Y., … Hashimoto, J. (2011). Serum level of oxidative stress marker is dramatically low in patients with rheumatoid arthritis treated with tocilizumab. Rheumatology International, 32(12), 4041-4045. doi:10.1007/s00296-011-2135-0 es_ES
dc.description.references McGarry, T., Orr, C., Wade, S., Biniecka, M., Wade, S., Gallagher, L., … Fearon, U. (2018). JAK/STATBlockade Alters Synovial Bioenergetics, Mitochondrial Function, and Proinflammatory Mediators in Rheumatoid Arthritis. Arthritis & Rheumatology, 70(12), 1959-1970. doi:10.1002/art.40569 es_ES
dc.description.references Firestein, G. S., & McInnes, I. B. (2017). Immunopathogenesis of Rheumatoid Arthritis. Immunity, 46(2), 183-196. doi:10.1016/j.immuni.2017.02.006 es_ES
dc.description.references Burmester, G. R., Feist, E., & Dörner, T. (2013). Emerging cell and cytokine targets in rheumatoid arthritis. Nature Reviews Rheumatology, 10(2), 77-88. doi:10.1038/nrrheum.2013.168 es_ES
dc.description.references Loeser, R. F., Goldring, S. R., Scanzello, C. R., & Goldring, M. B. (2012). Osteoarthritis: A disease of the joint as an organ. Arthritis & Rheumatism, 64(6), 1697-1707. doi:10.1002/art.34453 es_ES
dc.description.references Goldring, M. B., & Marcu, K. B. (2009). Cartilage homeostasis in health and rheumatic diseases. Arthritis Research & Therapy, 11(3), 224. doi:10.1186/ar2592 es_ES
dc.description.references Liu-Bryan, R., & Terkeltaub, R. (2014). Emerging regulators of the inflammatory process in osteoarthritis. Nature Reviews Rheumatology, 11(1), 35-44. doi:10.1038/nrrheum.2014.162 es_ES
dc.description.references Hultqvist, M., Olsson, L. M., Gelderman, K. A., & Holmdahl, R. (2009). The protective role of ROS in autoimmune disease. Trends in Immunology, 30(5), 201-208. doi:10.1016/j.it.2009.03.004 es_ES
dc.description.references Li, J., Stein, T. D., & Johnson, J. A. (2004). Genetic dissection of systemic autoimmune disease in Nrf2-deficient mice. Physiological Genomics, 18(3), 261-272. doi:10.1152/physiolgenomics.00209.2003 es_ES
dc.description.references Morito, N., Yoh, K., Hirayama, A., Itoh, K., Nose, M., Koyama, A., … Takahashi, S. (2004). Nrf2 deficiency improves autoimmune nephritis caused by the fas mutation lpr. Kidney International, 65(5), 1703-1713. doi:10.1111/j.1523-1755.2004.00565.x es_ES
dc.description.references Ma, Q., Battelli, L., & Hubbs, A. F. (2006). Multiorgan Autoimmune Inflammation, Enhanced Lymphoproliferation, and Impaired Homeostasis of Reactive Oxygen Species in Mice Lacking the Antioxidant-Activated Transcription Factor Nrf2. The American Journal of Pathology, 168(6), 1960-1974. doi:10.2353/ajpath.2006.051113 es_ES
dc.description.references Gopal, S., Mikulskis, A., Gold, R., Fox, R. J., Dawson, K. T., & Amaravadi, L. (2017). Evidence of activation of the Nrf2 pathway in multiple sclerosis patients treated with delayed-release dimethyl fumarate in the Phase 3 DEFINE and CONFIRM studies. Multiple Sclerosis Journal, 23(14), 1875-1883. doi:10.1177/1352458517690617 es_ES
dc.description.references Bomprezzi, R. (2015). Dimethyl fumarate in the treatment of relapsing–remitting multiple sclerosis: an overview. Therapeutic Advances in Neurological Disorders, 8(1), 20-30. doi:10.1177/1756285614564152 es_ES
dc.description.references Schulze-Topphoff, U., Varrin-Doyer, M., Pekarek, K., Spencer, C. M., Shetty, A., Sagan, S. A., … Zamvil, S. S. (2016). Dimethyl fumarate treatment induces adaptive and innate immune modulation independent of Nrf2. Proceedings of the National Academy of Sciences, 113(17), 4777-4782. doi:10.1073/pnas.1603907113 es_ES
dc.description.references Guo, H., Callaway, J. B., & Ting, J. P.-Y. (2015). Inflammasomes: mechanism of action, role in disease, and therapeutics. Nature Medicine, 21(7), 677-687. doi:10.1038/nm.3893 es_ES
dc.description.references Guo, C., Fu, R., Wang, S., Huang, Y., Li, X., Zhou, M., … Yang, N. (2018). NLRP3 inflammasome activation contributes to the pathogenesis of rheumatoid arthritis. Clinical & Experimental Immunology, 194(2), 231-243. doi:10.1111/cei.13167 es_ES
dc.description.references Mathews, R. J., Robinson, J. I., Battellino, M., Wong, C., Taylor, J. C., … Eyre, S. (2013). Evidence of NLRP3-inflammasome activation in rheumatoid arthritis (RA); genetic variants within the NLRP3-inflammasome complex in relation to susceptibility to RA and response to anti-TNF treatment. Annals of the Rheumatic Diseases, 73(6), 1202-1210. doi:10.1136/annrheumdis-2013-203276 es_ES
dc.description.references Liu, X., Zhang, X., Ding, Y., Zhou, W., Tao, L., Lu, P., … Hu, R. (2017). Nuclear Factor E2-Related Factor-2 Negatively Regulates NLRP3 Inflammasome Activity by Inhibiting Reactive Oxygen Species-Induced NLRP3 Priming. Antioxidants & Redox Signaling, 26(1), 28-43. doi:10.1089/ars.2015.6615 es_ES
dc.description.references Hennig, P., Garstkiewicz, M., Grossi, S., Di Filippo, M., French, L., & Beer, H.-D. (2018). The Crosstalk between Nrf2 and Inflammasomes. International Journal of Molecular Sciences, 19(2), 562. doi:10.3390/ijms19020562 es_ES
dc.description.references Nagai, N., Thimmulappa, R. K., Cano, M., Fujihara, M., Izumi-Nagai, K., Kong, X., … Handa, J. T. (2009). Nrf2 is a critical modulator of the innate immune response in a model of uveitis. Free Radical Biology and Medicine, 47(3), 300-306. doi:10.1016/j.freeradbiomed.2009.04.033 es_ES
dc.description.references Thimmulappa, R. K. (2006). Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. Journal of Clinical Investigation, 116(4), 984-995. doi:10.1172/jci25790 es_ES
dc.description.references Vijayan, V., Wagener, F. A. D. T. G., & Immenschuh, S. (2018). The macrophage heme-heme oxygenase-1 system and its role in inflammation. Biochemical Pharmacology, 153, 159-167. doi:10.1016/j.bcp.2018.02.010 es_ES
dc.description.references Mackern-Oberti, J., Riquelme, S., Llanos, C., Schmidt, C., Simon, T., Anegon, I., … Kalergis, A. (2014). Heme Oxygenase-1 as a Target for the Design of Gene and Pharmaceutical Therapies for Autoimmune Diseases. Current Gene Therapy, 14(3), 218-235. doi:10.2174/1566523214666140424150308 es_ES
dc.description.references Riquelme, S. A., Carreño, L. J., Espinoza, J. A., Mackern-Oberti, J. P., Alvarez-Lobos, M. M., Riedel, C. A., … Kalergis, A. M. (2016). Modulation of antigen processing by haem-oxygenase 1. Implications on inflammation and tolerance. Immunology, 149(1), 1-12. doi:10.1111/imm.12605 es_ES
dc.description.references Thomas, R., MacDonald, K. P. A., Pettit, A. R., Cavanagh, L. L., Padmanabha, J., & Zehntner, S. (1999). Dendritic cells and the pathogenesis of rheumatoid arthritis. Journal of Leukocyte Biology, 66(2), 286-292. doi:10.1002/jlb.66.2.286 es_ES
dc.description.references Yoo, E. J., Lee, H. H., Ye, B. J., Lee, J. H., Lee, C. Y., Kang, H. J., … Choi, S. Y. (2019). TonEBP Suppresses the HO-1 Gene by Blocking Recruitment of Nrf2 to Its Promoter. Frontiers in Immunology, 10. doi:10.3389/fimmu.2019.00850 es_ES
dc.description.references Liang, J., Jahraus, B., Balta, E., Ziegler, J. D., Hübner, K., Blank, N., … Samstag, Y. (2018). Sulforaphane Inhibits Inflammatory Responses of Primary Human T-Cells by Increasing ROS and Depleting Glutathione. Frontiers in Immunology, 9. doi:10.3389/fimmu.2018.02584 es_ES
dc.description.references Kapturczak, M. H., Wasserfall, C., Brusko, T., Campbell-Thompson, M., Ellis, T. M., Atkinson, M. A., & Agarwal, A. (2004). Heme Oxygenase-1 Modulates Early Inflammatory Responses. The American Journal of Pathology, 165(3), 1045-1053. doi:10.1016/s0002-9440(10)63365-2 es_ES
dc.description.references Fan, M., Li, Y., Yao, C., Liu, X., Liu, X., & Liu, J. (2018). Dihydroartemisinin derivative DC32 attenuates collagen-induced arthritis in mice by restoring the Treg/Th17 balance and inhibiting synovitis through down-regulation of IL-6. International Immunopharmacology, 65, 233-243. doi:10.1016/j.intimp.2018.10.015 es_ES
dc.description.references Wu, B., Wu, Y., & Tang, W. (2019). Heme Catabolic Pathway in Inflammation and Immune Disorders. Frontiers in Pharmacology, 10. doi:10.3389/fphar.2019.00825 es_ES
dc.description.references Ferrandiz, M. L., Maicas, N., Garcia-Arnandis, I., Terencio, M. C., Motterlini, R., Devesa, I., … Alcaraz, M. J. (2007). Treatment with a CO-releasing molecule (CORM-3) reduces joint inflammation and erosion in murine collagen-induced arthritis. Annals of the Rheumatic Diseases, 67(9), 1211-1217. doi:10.1136/ard.2007.082412 es_ES
dc.description.references Watanabe-Matsui, M., Muto, A., Matsui, T., Itoh-Nakadai, A., Nakajima, O., Murayama, K., … Igarashi, K. (2011). Heme regulates B-cell differentiation, antibody class switch, and heme oxygenase-1 expression in B cells as a ligand of Bach2. Blood, 117(20), 5438-5448. doi:10.1182/blood-2010-07-296483 es_ES
dc.description.references Kong, J.-S., Yoo, S.-A., Kim, H.-S., Kim, H. A., Yea, K., Ryu, S.-H., … Kim, W.-U. (2010). Inhibition of synovial hyperplasia, rheumatoid T cell activation, and experimental arthritis in mice by sulforaphane, a naturally occurring isothiocyanate. Arthritis & Rheumatism, 62(1), 159-170. doi:10.1002/art.25017 es_ES
dc.description.references Hoffmann, M. H., & Griffiths, H. R. (2018). The dual role of Reactive Oxygen Species in autoimmune and inflammatory diseases: evidence from preclinical models. Free Radical Biology and Medicine, 125, 62-71. doi:10.1016/j.freeradbiomed.2018.03.016 es_ES
dc.description.references Weyand, C. M., Shen, Y., & Goronzy, J. J. (2018). Redox-sensitive signaling in inflammatory T cells and in autoimmune disease. Free Radical Biology and Medicine, 125, 36-43. doi:10.1016/j.freeradbiomed.2018.03.004 es_ES
dc.description.references Rueda, B., Oliver, J., Robledo, G., López-Nevot, M. A., Balsa, A., Pascual-Salcedo, D., … Martín, J. (2007). HO-1promoter polymorphism associated with rheumatoid arthritis. Arthritis & Rheumatism, 56(12), 3953-3958. doi:10.1002/art.23048 es_ES
dc.description.references Wagener, F. A. D. T. G., Toonen, E. J. M., Wigman, L., Fransen, J., Creemers, M. C. W., Radstake, T. R. D. J., … Russel, F. G. M. (2008). HMOX1promoter polymorphism modulates the relationship between disease activity and joint damage in rheumatoid arthritis. Arthritis & Rheumatism, 58(11), 3388-3393. doi:10.1002/art.23970 es_ES
dc.description.references Fox, D. A., Gizinski, A., Morgan, R., & Lundy, S. K. (2010). Cell-cell Interactions in Rheumatoid Arthritis Synovium. Rheumatic Disease Clinics of North America, 36(2), 311-323. doi:10.1016/j.rdc.2010.02.004 es_ES
dc.description.references Noss, E. H., & Brenner, M. B. (2008). The role and therapeutic implications of fibroblast-like synoviocytes in inflammation and cartilage erosion in rheumatoid arthritis. Immunological Reviews, 223(1), 252-270. doi:10.1111/j.1600-065x.2008.00648.x es_ES
dc.description.references Firestein, G. S. (2003). Evolving concepts of rheumatoid arthritis. Nature, 423(6937), 356-361. doi:10.1038/nature01661 es_ES
dc.description.references Filippin, L. I., Vercelino, R., Marroni, N. P., & Xavier, R. M. (2008). Redox signalling and the inflammatory response in rheumatoid arthritis. Clinical & Experimental Immunology, 152(3), 415-422. doi:10.1111/j.1365-2249.2008.03634.x es_ES
dc.description.references Ahmed, U., Thornalley, P. J., & Rabbani, N. (2014). Possible role of methylglyoxal and glyoxalase in arthritis. Biochemical Society Transactions, 42(2), 538-542. doi:10.1042/bst20140024 es_ES
dc.description.references Xue, M., Rabbani, N., Momiji, H., Imbasi, P., Anwar, M. M., Kitteringham, N., … Thornalley, P. J. (2012). Transcriptional control of glyoxalase 1 by Nrf2 provides a stress-responsive defence against dicarbonyl glycation. Biochemical Journal, 443(1), 213-222. doi:10.1042/bj20111648 es_ES
dc.description.references Asahara, H., Fujisawa, K., Kobata, T., Hasunuma, T., Maeda, T., Asanuma, M., … Nishioka, K. (1997). Direct evidence of high DNA binding activity of transcription factor AP-1 in rheumatoid arthritis synovium. Arthritis & Rheumatism, 40(5), 912-918. doi:10.1002/art.1780400520 es_ES
dc.description.references Westra, J., Molema, G., & Kallenberg, C. (2010). Hypoxia-Inducible Factor-1 as Regulator of Angiogenesis in Rheumatoid Arthritis - Therapeutic Implications. Current Medicinal Chemistry, 17(3), 254-263. doi:10.2174/092986710790149783 es_ES
dc.description.references Feldmann, M., Brennan, F. M., & Maini, R. N. (1996). Rheumatoid Arthritis. Cell, 85(3), 307-310. doi:10.1016/s0092-8674(00)81109-5 es_ES
dc.description.references Rannou, F., François, M., Corvol, M.-T., & Berenbaum, F. (2006). Cartilage breakdown in rheumatoid arthritis. Joint Bone Spine, 73(1), 29-36. doi:10.1016/j.jbspin.2004.12.013 es_ES
dc.description.references Granet, C., Maslinski, W., & Miossec, P. (2004). Arthritis Research & Therapy, 6(3), R190. doi:10.1186/ar1159 es_ES
dc.description.references Li, X., & Makarov, S. S. (2006). An essential role of NF- B in the «tumor-like» phenotype of arthritic synoviocytes. Proceedings of the National Academy of Sciences, 103(46), 17432-17437. doi:10.1073/pnas.0607939103 es_ES
dc.description.references McGarry, T., Biniecka, M., Veale, D. J., & Fearon, U. (2018). Hypoxia, oxidative stress and inflammation. Free Radical Biology and Medicine, 125, 15-24. doi:10.1016/j.freeradbiomed.2018.03.042 es_ES
dc.description.references Wruck, C. J., Fragoulis, A., Gurzynski, A., Brandenburg, L.-O., Kan, Y. W., Chan, K., … Pufe, T. (2010). Role of oxidative stress in rheumatoid arthritis: insights from the Nrf2-knockout mice. Annals of the Rheumatic Diseases, 70(5), 844-850. doi:10.1136/ard.2010.132720 es_ES
dc.description.references Fragoulis, A., Laufs, J., Müller, S., Soppa, U., Siegl, S., Reiss, L., … Wruck, C. (2012). Sulforaphane has opposing effects on TNF-alpha stimulated and unstimulated synoviocytes. Arthritis Research & Therapy, 14(5), R220. doi:10.1186/ar4059 es_ES
dc.description.references Kobayashi, H., Takeno, M., Saito, T., Takeda, Y., Kirino, Y., Noyori, K., … Ishigatsubo, Y. (2006). Regulatory role of heme oxygenase 1 in inflammation of rheumatoid arthritis. Arthritis & Rheumatism, 54(4), 1132-1142. doi:10.1002/art.21754 es_ES
dc.description.references Maicas, N., Ferrándiz, M. L., Brines, R., Ibáñez, L., Cuadrado, A., Koenders, M. I., … Alcaraz, M. J. (2011). Deficiency of Nrf2 Accelerates the Effector Phase of Arthritis and Aggravates Joint Disease. Antioxidants & Redox Signaling, 15(4), 889-901. doi:10.1089/ars.2010.3835 es_ES
dc.description.references Zwerina, J., Tzima, S., Hayer, S., Redlich, K., Hoffmann, O., Hanslik‐Schnabel, B., … Schett, G. (2005). Heme oxygenase 1 (HO‐1) regulates osteoclastogenesis and bone resorption. The FASEB Journal, 19(14), 2011-2013. doi:10.1096/fj.05-4278fje es_ES
dc.description.references Kitamura, A., Nishida, K., Komiyama, T., Doi, H., Kadota, Y., Yoshida, A., & Ozaki, T. (2011). Increased level of heme oxygenase-1 in rheumatoid arthritis synovial fluid. Modern Rheumatology, 21(2), 150-157. doi:10.3109/s10165-010-0372-9 es_ES
dc.description.references Park, S. Y., Lee, S. W., Shin, H. K., Chung, W. T., Lee, W. S., Rhim, B. Y., … Kim, C. D. (2010). Cilostazol enhances apoptosis of synovial cells from rheumatoid arthritis patients with inhibition of cytokine formation via Nrf2-linked heme oxygenase 1 induction. Arthritis & Rheumatism, 62(3), 732-741. doi:10.1002/art.27291 es_ES
dc.description.references Chi, P.-L., Chen, Y.-W., Hsiao, L.-D., Chen, Y.-L., & Yang, C.-M. (2012). Heme oxygenase 1 attenuates interleukin-1β-induced cytosolic phospholipase A2 expression via a decrease in NADPH oxidase/reactive oxygen species/activator protein 1 activation in rheumatoid arthritis synovial fibroblasts. Arthritis & Rheumatism, 64(7), 2114-2125. doi:10.1002/art.34371 es_ES
dc.description.references Su, X., Huang, Q., Chen, J., Wang, M., Pan, H., Wang, R., … Liu, L. (2016). Calycosin suppresses expression of pro-inflammatory cytokines via the activation of p62/Nrf2-linked heme oxygenase 1 in rheumatoid arthritis synovial fibroblasts. Pharmacological Research, 113, 695-704. doi:10.1016/j.phrs.2016.09.031 es_ES
dc.description.references Chi, P.-L., Chuang, Y.-C., Chen, Y.-W., Lin, C.-C., Hsiao, L.-D., & Yang, C.-M. (2014). The CO donor CORM-2 inhibits LPS-induced vascular cell adhesion molecule-1 expression and leukocyte adhesion in human rheumatoid synovial fibroblasts. British Journal of Pharmacology, 171(12), 2993-3009. doi:10.1111/bph.12680 es_ES
dc.description.references Kirino, Y., Takeno, M., Murakami, S., Kobayashi, M., Kobayashi, H., Miura, K., … Ishigatsubo, Y. (2007). Tumor necrosis factor α acceleration of inflammatory responses by down-regulating heme oxygenase 1 in human peripheral monocytes. Arthritis & Rheumatism, 56(2), 464-475. doi:10.1002/art.22370 es_ES
dc.description.references Moon, S.-J., Kim, E.-K., Jhun, J. Y., Lee, H. J., Lee, W. S., Park, S.-H., … Min, J.-K. (2017). The active metabolite of leflunomide, A77 1726, attenuates inflammatory arthritis in mice with spontaneous arthritis via induction of heme oxygenase-1. Journal of Translational Medicine, 15(1). doi:10.1186/s12967-017-1131-x es_ES
dc.description.references Boyer, J. F., Baron, M., Constantin, A., Degboé, Y., Cantagrel, A., & Davignon, J.-L. (2016). Anti-TNF certolizumab pegol induces antioxidant response in human monocytes via reverse signaling. Arthritis Research & Therapy, 18(1). doi:10.1186/s13075-016-0955-8 es_ES
dc.description.references Xue, W.-L., Bai, X., & Zhang, L. (2015). rhTNFR:Fc increases Nrf2 expression via miR-27a mediation to protect myocardium against sepsis injury. Biochemical and Biophysical Research Communications, 464(3), 855-861. doi:10.1016/j.bbrc.2015.07.051 es_ES
dc.description.references Kataoka, K., Handa, H., & Nishizawa, M. (2001). Induction of Cellular Antioxidative Stress Genes through Heterodimeric Transcription Factor Nrf2/Small Maf by Antirheumatic Gold(I) Compounds. Journal of Biological Chemistry, 276(36), 34074-34081. doi:10.1074/jbc.m105383200 es_ES
dc.description.references Kim, J.-Y., Cho, H.-J., Sir, J.-J., Kim, B.-K., Hur, J., Youn, S.-W., … Kim, H.-S. (2009). Sulfasalazine induces haem oxygenase-1 via ROS-dependent Nrf2 signalling, leading to control of neointimal hyperplasia. Cardiovascular Research, 82(3), 550-560. doi:10.1093/cvr/cvp072 es_ES
dc.description.references Biagiotti, S., Bianchi, M., Rossi, L., Chessa, L., & Magnani, M. (2019). Activation of NRF2 by dexamethasone in ataxia telangiectasia cells involves KEAP1 inhibition but not the inhibition of p38. PLOS ONE, 14(5), e0216668. doi:10.1371/journal.pone.0216668 es_ES
dc.description.references Biagiotti, S., Menotta, M., Orazi, S., Spapperi, C., Brundu, S., Fraternale, A., … Magnani, M. (2016). Dexamethasone improves redox state in ataxia telangiectasia cells by promoting an NRF2‐mediated antioxidant response. The FEBS Journal, 283(21), 3962-3978. doi:10.1111/febs.13901 es_ES
dc.description.references Ma, Y., Chen, Z., Zou, Y., & Ge, J. (2014). Atorvastatin Represses the Angiotensin 2-Induced Oxidative Stress and Inflammatory Response in Dendritic Cells via the PI3K/Akt/Nrf 2 Pathway. Oxidative Medicine and Cellular Longevity, 2014, 1-10. doi:10.1155/2014/148798 es_ES
dc.description.references Ali, F., Zakkar, M., Karu, K., Lidington, E. A., Hamdulay, S. S., Boyle, J. J., … Mason, J. C. (2009). Induction of the Cytoprotective Enzyme Heme Oxygenase-1 by Statins Is Enhanced in Vascular Endothelium Exposed to Laminar Shear Stress and Impaired by Disturbed Flow. Journal of Biological Chemistry, 284(28), 18882-18892. doi:10.1074/jbc.m109.009886 es_ES
dc.description.references Yeh, Y.-H., Kuo, C.-T., Chang, G.-J., Chen, Y.-H., Lai, Y.-J., Cheng, M.-L., & Chen, W.-J. (2015). Rosuvastatin suppresses atrial tachycardia-induced cellular remodeling via Akt/Nrf2/heme oxygenase-1 pathway. Journal of Molecular and Cellular Cardiology, 82, 84-92. doi:10.1016/j.yjmcc.2015.03.004 es_ES
dc.description.references Chartoumpekis, D., Ziros, P. G., Psyrogiannis, A., Kyriazopoulou, V., Papavassiliou, A. G., & Habeos, I. G. (2010). Simvastatin lowers reactive oxygen species level by Nrf2 activation via PI3K/Akt pathway. Biochemical and Biophysical Research Communications, 396(2), 463-466. doi:10.1016/j.bbrc.2010.04.117 es_ES
dc.description.references Lee, T.-S., Chang, C.-C., Zhu, Y., & Shyy, J. Y.-J. (2004). Simvastatin Induces Heme Oxygenase-1. Circulation, 110(10), 1296-1302. doi:10.1161/01.cir.0000140694.67251.9c es_ES
dc.description.references Habeos, I. G., Ziros, P. G., Chartoumpekis, D., Psyrogiannis, A., Kyriazopoulou, V., & Papavassiliou, A. G. (2008). Simvastatin activates Keap1/Nrf2 signaling in rat liver. Journal of Molecular Medicine, 86(11), 1279-1285. doi:10.1007/s00109-008-0393-4 es_ES
dc.description.references Graber, D. J., Hickey, W. F., Stommel, E. W., & Harris, B. T. (2012). Anti-Inflammatory Efficacy of Dexamethasone and Nrf2 Activators in the CNS Using Brain Slices as a Model of Acute Injury. Journal of Neuroimmune Pharmacology, 7(1), 266-278. doi:10.1007/s11481-011-9338-8 es_ES
dc.description.references Chen, Y.-C., Chen, C.-H., Ko, W.-S., Cheng, C.-Y., Sue, Y.-M., & Chen, T.-H. (2011). Dipyridamole inhibits lipopolysaccharide-induced cyclooxygenase-2 and monocyte chemoattractant protein-1 via heme oxygenase-1-mediated reactive oxygen species reduction in rat mesangial cells. European Journal of Pharmacology, 650(1), 445-450. doi:10.1016/j.ejphar.2010.09.058 es_ES
dc.description.references Li, L., Zhao, Z., Zhang, L., He, J., Zhang, T., Guo, J., … Peng, S. (2019). Atorvastatin induces mitochondrial dysfunction and cell apoptosis in HepG2 cells via inhibition of the Nrf2 pathway. Journal of Applied Toxicology, 39(10), 1394-1404. doi:10.1002/jat.3825 es_ES
dc.description.references Alam, M. M., Okazaki, K., Nguyen, L. T. T., Ota, N., Kitamura, H., Murakami, S., … Motohashi, H. (2017). Glucocorticoid receptor signaling represses the antioxidant response by inhibiting histone acetylation mediated by the transcriptional activator NRF2. Journal of Biological Chemistry, 292(18), 7519-7530. doi:10.1074/jbc.m116.773960 es_ES
dc.description.references Brines, R., Maicas, N., Ferrándiz, M. L., Loboda, A., Jozkowicz, A., Dulak, J., & Alcaraz, M. J. (2012). Heme Oxygenase-1 Regulates the Progression of K/BxN Serum Transfer Arthritis. PLoS ONE, 7(12), e52435. doi:10.1371/journal.pone.0052435 es_ES
dc.description.references Brines, R., Catalán, L., Alcaraz, M. J., & Ferrándiz, M. L. (2018). Myeloid Heme Oxygenase-1 Regulates the Acute Inflammatory Response to Zymosan in the Mouse Air Pouch. Oxidative Medicine and Cellular Longevity, 2018, 1-8. doi:10.1155/2018/5053091 es_ES
dc.description.references Heiss, E., Herhaus, C., Klimo, K., Bartsch, H., & Gerhäuser, C. (2001). Nuclear Factor κB Is a Molecular Target for Sulforaphane-mediated Anti-inflammatory Mechanisms. Journal of Biological Chemistry, 276(34), 32008-32015. doi:10.1074/jbc.m104794200 es_ES
dc.description.references Wu, W.-J., Jia, W.-W., Liu, X.-H., Pan, L.-L., Zhang, Q.-Y., Yang, D., … Zhu, Y. Z. (2016). S-propargyl-cysteine attenuates inflammatory response in rheumatoid arthritis by modulating the Nrf2-ARE signaling pathway. Redox Biology, 10, 157-167. doi:10.1016/j.redox.2016.08.011 es_ES
dc.description.references Devesa, I., Ferrándiz, M. L., Terencio, M. C., Joosten, L. A. B., van den Berg, W. B., & Alcaraz, M. J. (2005). Influence of heme oxygenase 1 modulation on the progression of murine collagen-induced arthritis. Arthritis & Rheumatism, 52(10), 3230-3238. doi:10.1002/art.21356 es_ES
dc.description.references Benallaoua, M., François, M., Batteux, F., Thelier, N., Shyy, J. Y.-J., Fitting, C., … Rannou, F. (2007). Pharmacologic induction of heme oxygenase 1 reduces acute inflammatory arthritis in mice. Arthritis & Rheumatism, 56(8), 2585-2594. doi:10.1002/art.22749 es_ES
dc.description.references Maicas, N., Ferrándiz, M. L., Devesa, I., Motterlini, R., Koenders, M. I., van den Berg, W. B., & Alcaraz, M. J. (2010). The CO-releasing molecule CORM-3 protects against articular degradation in the K/BxN serum transfer arthritis model. European Journal of Pharmacology, 634(1-3), 184-191. doi:10.1016/j.ejphar.2010.02.028 es_ES
dc.description.references Takagi, T., Naito, Y., Inoue, M., Akagiri, S., Mizushima, K., Handa, O., … Yoshikawa, T. (2009). Inhalation of Carbon Monoxide Ameliorates Collagen-induced Arthritis in Mice and Regulates the Articular Expression of IL-1β and MCP-1. Inflammation, 32(2), 83-88. doi:10.1007/s10753-009-9106-6 es_ES
dc.description.references Yuan, T., Chen, J., Tong, Y., Zhang, Y., Liu, Y., Wei, J. C.-C., … Herrmann, M. (2016). Serum Heme Oxygenase-1 and BMP-7 Are Potential Biomarkers for Bone Metabolism in Patients with Rheumatoid Arthritis and Ankylosing Spondylitis. BioMed Research International, 2016, 1-7. doi:10.1155/2016/7870925 es_ES
dc.description.references Wei, S., Kitaura, H., Zhou, P., Ross, F. P., & Teitelbaum, S. L. (2005). IL-1 mediates TNF-induced osteoclastogenesis. Journal of Clinical Investigation, 115(2), 282-290. doi:10.1172/jci200523394 es_ES
dc.description.references Ha, H., Bok Kwak, H., Woong Lee, S., Mi Jin, H., Kim, H.-M., Kim, H.-H., & Hee Lee, Z. (2004). Reactive oxygen species mediate RANK signaling in osteoclasts. Experimental Cell Research, 301(2), 119-127. doi:10.1016/j.yexcr.2004.07.035 es_ES
dc.description.references Hyeon, S., Lee, H., Yang, Y., & Jeong, W. (2013). Nrf2 deficiency induces oxidative stress and promotes RANKL-induced osteoclast differentiation. Free Radical Biology and Medicine, 65, 789-799. doi:10.1016/j.freeradbiomed.2013.08.005 es_ES
dc.description.references Kanzaki, H., Shinohara, F., Kajiya, M., & Kodama, T. (2013). The Keap1/Nrf2 Protein Axis Plays a Role in Osteoclast Differentiation by Regulating Intracellular Reactive Oxygen Species Signaling. Journal of Biological Chemistry, 288(32), 23009-23020. doi:10.1074/jbc.m113.478545 es_ES
dc.description.references Kanzaki, H., Shinohara, F., Itohiya, K., Yamaguchi, Y., Katsumata, Y., Matsuzawa, M., … Nakamura, Y. (2016). RANKL induces Bach1 nuclear import and attenuates Nrf2‐mediated antioxidant enzymes, thereby augmenting intracellular reactive oxygen species signaling and osteoclastogenesis in mice. The FASEB Journal, 31(2), 781-792. doi:10.1096/fj.201600826r es_ES
dc.description.references Sakai, E., Shimada-Sugawara, M., Nishishita, K., Fukuma, Y., Naito, M., Okamoto, K., … Tsukuba, T. (2012). Suppression of RANKL-dependent heme oxygenase-1 is required for high mobility group box 1 release and osteoclastogenesis. Journal of Cellular Biochemistry, 113(2), 486-498. doi:10.1002/jcb.23372 es_ES
dc.description.references Zhou, Z., Han, J.-Y., Xi, C.-X., Xie, J.-X., Feng, X., Wang, C.-Y., … Xiong, W.-C. (2008). HMGB1 Regulates RANKL-Induced Osteoclastogenesis in a Manner Dependent on RAGE. Journal of Bone and Mineral Research, 23(7), 1084-1096. doi:10.1359/jbmr.080234 es_ES
dc.description.references Kanzaki, H., Shinohara, F., Kajiya, M., Fukaya, S., Miyamoto, Y., & Nakamura, Y. (2014). Nuclear Nrf2 Induction by Protein Transduction Attenuates Osteoclastogenesis. Free Radical Biology and Medicine, 77, 239-248. doi:10.1016/j.freeradbiomed.2014.09.006 es_ES
dc.description.references Firestein, G. S. (2007). Every Joint Has a Silver Lining. Science, 315(5814), 952-953. doi:10.1126/science.1139574 es_ES
dc.description.references Cai, D., Huff, T. W., Liu, J., Yuan, T., Wei, Z., & Qin, J. (2019). Alleviation of Cartilage Destruction by Sinapic Acid in Experimental Osteoarthritis. BioMed Research International, 2019, 1-9. doi:10.1155/2019/5689613 es_ES
dc.description.references Abusarah, J., Benabdoune, H., Shi, Q., Lussier, B., Martel-Pelletier, J., Malo, M., … Benderdour, M. (2017). Elucidating the Role of Protandim and 6-Gingerol in Protection Against Osteoarthritis. Journal of Cellular Biochemistry, 118(5), 1003-1013. doi:10.1002/jcb.25659 es_ES
dc.description.references Khan, N. M., Ahmad, I., & Haqqi, T. M. (2018). Nrf2/ARE pathway attenuates oxidative and apoptotic response in human osteoarthritis chondrocytes by activating ERK1/2/ELK1-P70S6K-P90RSK signaling axis. Free Radical Biology and Medicine, 116, 159-171. doi:10.1016/j.freeradbiomed.2018.01.013 es_ES
dc.description.references Fernández, P., Guillén, M. I., Gomar, F., & Alcaraz, M. J. (2003). Expression of heme oxygenase-1 and regulation by cytokines in human osteoarthritic chondrocytes. Biochemical Pharmacology, 66(10), 2049-2052. doi:10.1016/s0006-2952(03)00543-4 es_ES
dc.description.references Vaamonde-Garcia, C., Courties, A., Pigenet, A., Laiguillon, M.-C., Sautet, A., Houard, X., … Sellam, J. (2017). The nuclear factor-erythroid 2-related factor/heme oxygenase-1 axis is critical for the inflammatory features of type 2 diabetes–associated osteoarthritis. Journal of Biological Chemistry, 292(35), 14505-14515. doi:10.1074/jbc.m117.802157 es_ES
dc.description.references García-Arnandis, I., Guillén, M. I., Castejón, M. A., Gomar, F., & Alcaraz, M. J. (2010). Haem oxygenase-1 down-regulates high mobility group box 1 and matrix metalloproteinases in osteoarthritic synoviocytes. Rheumatology, 49(5), 854-861. doi:10.1093/rheumatology/kep463 es_ES
dc.description.references Clérigues, V., Guillén, M. I., Castejón, M. A., Gomar, F., Mirabet, V., & Alcaraz, M. J. (2012). Heme oxygenase-1 mediates protective effects on inflammatory, catabolic and senescence responses induced by interleukin-1β in osteoarthritic osteoblasts. Biochemical Pharmacology, 83(3), 395-405. doi:10.1016/j.bcp.2011.11.024 es_ES
dc.description.references Houard, X., Goldring, M. B., & Berenbaum, F. (2013). Homeostatic Mechanisms in Articular Cartilage and Role of Inflammation in Osteoarthritis. Current Rheumatology Reports, 15(11). doi:10.1007/s11926-013-0375-6 es_ES
dc.description.references Kim, J., Xu, M., Xo, R., Mates, A., Wilson, G. L., Pearsall, A. W., & Grishko, V. (2010). Mitochondrial DNA damage is involved in apoptosis caused by pro-inflammatory cytokines in human OA chondrocytes. Osteoarthritis and Cartilage, 18(3), 424-432. doi:10.1016/j.joca.2009.09.008 es_ES
dc.description.references Khan, N. M., Haseeb, A., Ansari, M. Y., Devarapalli, P., Haynie, S., & Haqqi, T. M. (2017). Wogonin, a plant derived small molecule, exerts potent anti-inflammatory and chondroprotective effects through the activation of ROS/ERK/Nrf2 signaling pathways in human Osteoarthritis chondrocytes. Free Radical Biology and Medicine, 106, 288-301. doi:10.1016/j.freeradbiomed.2017.02.041 es_ES
dc.description.references Hinoi, E., Takarada, T., Fujimori, S., Wang, L., Iemata, M., Uno, K., & Yoneda, Y. (2007). Nuclear factor E2 p45-related factor 2 negatively regulates chondrogenesis. Bone, 40(2), 337-344. doi:10.1016/j.bone.2006.08.016 es_ES
dc.description.references Guillén, M., Megías, J., Gomar, F., & Alcaraz, M. (2007). Haem oxygenase-1 regulates catabolic and anabolic processes in osteoarthritic chondrocytes. The Journal of Pathology, 214(4), 515-522. doi:10.1002/path.2313 es_ES
dc.description.references Megías, J., Guillén, M. I., Clérigues, V., Rojo, A. I., Cuadrado, A., Castejón, M. A., … Alcaraz, M. J. (2009). Heme oxygenase-1 induction modulates microsomal prostaglandin E synthase-1 expression and prostaglandin E2 production in osteoarthritic chondrocytes. Biochemical Pharmacology, 77(12), 1806-1813. doi:10.1016/j.bcp.2009.03.009 es_ES
dc.description.references Jeon, O. H., David, N., Campisi, J., & Elisseeff, J. H. (2018). Senescent cells and osteoarthritis: a painful connection. Journal of Clinical Investigation, 128(4), 1229-1237. doi:10.1172/jci95147 es_ES
dc.description.references Martin, J. A., Brown, T. D., Heiner, A. D., & Buckwalter, J. A. (2004). Chondrocyte Senescence, Joint Loading and Osteoarthritis. Clinical Orthopaedics & Related Research, 427, S96-S103. doi:10.1097/01.blo.0000143818.74887.b1 es_ES
dc.description.references Martin, J. A., & Buckwalter, J. A. (2001). Telomere Erosion and Senescence in Human Articular Cartilage Chondrocytes. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 56(4), B172-B179. doi:10.1093/gerona/56.4.b172 es_ES
dc.description.references Rose, J., Söder, S., Skhirtladze, C., Schmitz, N., Gebhard, P. M., Sesselmann, S., & Aigner, T. (2012). DNA damage, discoordinated gene expression and cellular senescence in osteoarthritic chondrocytes. Osteoarthritis and Cartilage, 20(9), 1020-1028. doi:10.1016/j.joca.2012.05.009 es_ES
dc.description.references Clérigues, V., Guillén, M. I., Gomar, F., & Alcaraz, M. J. (2011). Haem oxygenase-1 counteracts the effects of interleukin-1β on inflammatory and senescence markers in cartilage–subchondral bone explants from osteoarthritic patients. Clinical Science, 122(5), 239-251. doi:10.1042/cs20100519 es_ES
dc.description.references Wang, Y., Zhao, X., Lotz, M., Terkeltaub, R., & Liu-Bryan, R. (2015). Mitochondrial Biogenesis Is Impaired in Osteoarthritis Chondrocytes but Reversible via Peroxisome Proliferator-Activated Receptor γ Coactivator 1α. Arthritis & Rheumatology, 67(8), 2141-2153. doi:10.1002/art.39182 es_ES
dc.description.references Rhodes, M. A., Carraway, M. S., Piantadosi, C. A., Reynolds, C. M., Cherry, A. D., Wester, T. E., … Suliman, H. B. (2009). Carbon monoxide, skeletal muscle oxidative stress, and mitochondrial biogenesis in humans. American Journal of Physiology-Heart and Circulatory Physiology, 297(1), H392-H399. doi:10.1152/ajpheart.00164.2009 es_ES
dc.description.references Scanzello, C. R., & Goldring, S. R. (2012). The role of synovitis in osteoarthritis pathogenesis. Bone, 51(2), 249-257. doi:10.1016/j.bone.2012.02.012 es_ES
dc.description.references García-Arnandis, I., Guillén, M. I., Gomar, F., Castejón, M. A., & Alcaraz, M. J. (2011). Control of Cell Migration and Inflammatory Mediators Production by CORM-2 in Osteoarthritic Synoviocytes. PLoS ONE, 6(9), e24591. doi:10.1371/journal.pone.0024591 es_ES
dc.description.references Cai, D., Yin, S., Yang, J., Jiang, Q., & Cao, W. (2015). Histone deacetylase inhibition activates Nrf2 and protects against osteoarthritis. Arthritis Research & Therapy, 17(1). doi:10.1186/s13075-015-0774-3 es_ES
dc.description.references Pomatto, L. C. D., Cline, M., Woodward, N., Pakbin, P., Sioutas, C., Morgan, T. E., … Davies, K. J. A. (2018). Aging attenuates redox adaptive homeostasis and proteostasis in female mice exposed to traffic-derived nanoparticles (‘vehicular smog’). Free Radical Biology and Medicine, 121, 86-97. doi:10.1016/j.freeradbiomed.2018.04.574 es_ES
dc.description.references Ishitobi, H., Sanada, Y., Kato, Y., Ikuta, Y., Shibata, S., Yamasaki, S., … Adachi, N. (2018). Carnosic acid attenuates cartilage degeneration through induction of heme oxygenase-1 in human articular chondrocytes. European Journal of Pharmacology, 830, 1-8. doi:10.1016/j.ejphar.2018.04.018 es_ES
dc.description.references Takada, T., Miyaki, S., Ishitobi, H., Hirai, Y., Nakasa, T., Igarashi, K., … Ochi, M. (2015). Bach1 deficiency reduces severity of osteoarthritis through upregulation of heme oxygenase-1. Arthritis Research & Therapy, 17(1). doi:10.1186/s13075-015-0792-1 es_ES
dc.description.references Tang, Q., Feng, Z., Tong, M., Xu, J., Zheng, G., Shen, L., … Liu, H. (2017). Piceatannol inhibits the IL-1β-induced inflammatory response in human osteoarthritic chondrocytes and ameliorates osteoarthritis in mice by activating Nrf2. Food & Function, 8(11), 3926-3937. doi:10.1039/c7fo00822h es_ES
dc.description.references Liu, F.-C., Wang, C.-C., Lu, J.-W., Lee, C.-H., Chen, S.-C., Ho, Y.-J., & Peng, Y.-J. (2019). Chondroprotective Effects of Genistein against Osteoarthritis Induced Joint Inflammation. Nutrients, 11(5), 1180. doi:10.3390/nu11051180 es_ES
dc.description.references Takahashi, A., Mori, M., Naruto, T., Nakajima, S., Miyamae, T., Imagawa, T., & Yokota, S. (2009). The role of heme oxygenase-1 in systemic-onset juvenile idiopathic arthritis. Modern Rheumatology, 19(3), 302-308. doi:10.3109/s10165-009-0152-6 es_ES
dc.description.references Shimizu, M., & Yachie, A. (2012). Compensated inflammation in systemic juvenile idiopathic arthritis: Role of alternatively activated macrophages. Cytokine, 60(1), 226-232. doi:10.1016/j.cyto.2012.05.003 es_ES
dc.description.references Graff-Radford, S. B., & Abbott, J. J. (2016). Temporomandibular Disorders and Headache. Oral and Maxillofacial Surgery Clinics of North America, 28(3), 335-349. doi:10.1016/j.coms.2016.03.004 es_ES
dc.description.references Chaves, H. V., do Val, D. R., Ribeiro, K. A., Lemos, J. C., Souza, R. B., Gomes, F. I. F., … de Castro Brito, G. A. (2018). Heme oxygenase-1/biliverdin/carbon monoxide pathway downregulates hypernociception in rats by a mechanism dependent on cGMP/ATP-sensitive K+ channels. Inflammation Research, 67(5), 407-422. doi:10.1007/s00011-018-1133-z es_ES
dc.description.references Rustenburg, C. M. E., Emanuel, K. S., Peeters, M., Lems, W. F., Vergroesen, P.-P. A., & Smit, T. H. (2018). Osteoarthritis and intervertebral disc degeneration: Quite different, quite similar. JOR Spine, 1(4), e1033. doi:10.1002/jsp2.1033 es_ES
dc.description.references Suzuki, S., Fujita, N., Hosogane, N., Watanabe, K., Ishii, K., Toyama, Y., … Matsumoto, M. (2015). Excessive reactive oxygen species are therapeutic targets for intervertebral disc degeneration. Arthritis Research & Therapy, 17(1). doi:10.1186/s13075-015-0834-8 es_ES
dc.description.references Han, Y., Li, X., Yan, M., Yang, M., Wang, S., Pan, J., … Tan, J. (2019). Oxidative damage induces apoptosis and promotes calcification in disc cartilage endplate cell through ROS/MAPK/NF-κB pathway: Implications for disc degeneration. Biochemical and Biophysical Research Communications, 516(3), 1026-1032. doi:10.1016/j.bbrc.2017.03.111 es_ES
dc.description.references Zuo, R., Wang, Y., Li, J., Wu, J., Wang, W., Li, B., … Zhang, C. (2019). Rapamycin Induced Autophagy Inhibits Inflammation-Mediated Endplate Degeneration by Enhancing Nrf2/Keap1 Signaling of Cartilage Endplate Stem Cells. STEM CELLS, 37(6), 828-840. doi:10.1002/stem.2999 es_ES
dc.description.references Tang, Z., Hu, B., Zang, F., Wang, J., Zhang, X., & Chen, H. (2019). Nrf2 drives oxidative stress-induced autophagy in nucleus pulposus cells via a Keap1/Nrf2/p62 feedback loop to protect intervertebral disc from degeneration. Cell Death & Disease, 10(7). doi:10.1038/s41419-019-1701-3 es_ES
dc.description.references Zhang, C.-X., Wang, T., Ma, J.-F., Liu, Y., Zhou, Z.-G., & Wang, D.-C. (2017). Protective effect of CDDO-ethyl amide against high-glucose-induced oxidative injury via the Nrf2/HO-1 pathway. The Spine Journal, 17(7), 1017-1025. doi:10.1016/j.spinee.2017.03.015 es_ES
dc.description.references Cherif, H., Bisson, D., Jarzem, P., Weber, M., Ouellet, J., & Haglund, L. (2019). Curcumin and o-Vanillin Exhibit Evidence of Senolytic Activity in Human IVD Cells In Vitro. Journal of Clinical Medicine, 8(4), 433. doi:10.3390/jcm8040433 es_ES
dc.description.references Hu, B., Shi, C., Xu, C., Cao, P., Tian, Y., Zhang, Y., … Yuan, W. (2016). Heme oxygenase-1 attenuates IL-1β induced alteration of anabolic and catabolic activities in intervertebral disc degeneration. Scientific Reports, 6(1). doi:10.1038/srep21190 es_ES
dc.description.references Zhu, C., Jiang, W., Cheng, Q., Hu, Z., & Hao, J. (2018). Hemeoxygenase-1 Suppresses IL-1β-Induced Apoptosis Through the NF-κB Pathway in Human Degenerative Nucleus Pulposus Cells. Cellular Physiology and Biochemistry, 46(2), 644-653. doi:10.1159/000488632 es_ES
dc.description.references Ohta, R., Tanaka, N., Nakanishi, K., Kamei, N., Nakamae, T., Izumi, B., … Ochi, M. (2012). Heme oxygenase-1 modulates degeneration of the intervertebral disc after puncture in Bach 1 deficient mice. European Spine Journal, 21(9), 1748-1757. doi:10.1007/s00586-012-2442-5 es_ES
dc.description.references Baum, R., & Gravallese, E. M. (2013). Impact of Inflammation on the Osteoblast in Rheumatic Diseases. Current Osteoporosis Reports, 12(1), 9-16. doi:10.1007/s11914-013-0183-y es_ES
dc.description.references Staurengo-Ferrari, L., Badaro-Garcia, S., Hohmann, M. S. N., Manchope, M. F., Zaninelli, T. H., Casagrande, R., & Verri, W. A. (2019). Contribution of Nrf2 Modulation to the Mechanism of Action of Analgesic and Anti-inflammatory Drugs in Pre-clinical and Clinical Stages. Frontiers in Pharmacology, 9. doi:10.3389/fphar.2018.01536 es_ES
dc.description.references Kim, H., Thompson, J., Ji, G., Ganapathy, V., & Neugebauer, V. (2017). Monomethyl fumarate inhibits pain behaviors and amygdala activity in a rat arthritis model. Pain, 158(12), 2376-2385. doi:10.1097/j.pain.0000000000001042 es_ES
dc.description.references Steiner, A. A., Branco, L. G. S., Cunha, F. Q., & Ferreira, S. H. (2001). Role of the haeme oxygenase/carbon monoxide pathway in mechanical nociceptor hypersensitivity. British Journal of Pharmacology, 132(8), 1673-1682. doi:10.1038/sj.bjp.0704014 es_ES
dc.description.references Kapetanaki, S. M., Burton, M. J., Basran, J., Uragami, C., Moody, P. C. E., Mitcheson, J. S., … Raven, E. (2018). A mechanism for CO regulation of ion channels. Nature Communications, 9(1). doi:10.1038/s41467-018-03291-z es_ES
dc.description.references Ávila, M. A. P. de, Giusti-Paiva, A., & Nascimento, C. G. de O. (2014). The peripheral antinociceptive effect induced by the heme oxygenase/carbon monoxide pathway is associated with ATP-sensitive K+ channels. European Journal of Pharmacology, 726, 41-48. doi:10.1016/j.ejphar.2014.01.012 es_ES
dc.description.references Adenuga, D., Caito, S., Yao, H., Sundar, I. K., Hwang, J.-W., Chung, S., & Rahman, I. (2010). Nrf2 deficiency influences susceptibility to steroid resistance via HDAC2 reduction. Biochemical and Biophysical Research Communications, 403(3-4), 452-456. doi:10.1016/j.bbrc.2010.11.054 es_ES
dc.description.references Barnes, P. J., & Adcock, I. M. (2009). Glucocorticoid resistance in inflammatory diseases. The Lancet, 373(9678), 1905-1917. doi:10.1016/s0140-6736(09)60326-3 es_ES
dc.description.references Ebihara, S., Tajima, H., & Ono, M. (2016). Nuclear factor erythroid 2-related factor 2 is a critical target for the treatment of glucocorticoid-resistant lupus nephritis. Arthritis Research & Therapy, 18(1). doi:10.1186/s13075-016-1039-5 es_ES
dc.description.references Han, D., Gu, X., Gao, J., Wang, Z., Liu, G., Barkema, H. W., & Han, B. (2019). Chlorogenic acid promotes the Nrf2/HO-1 anti-oxidative pathway by activating p21Waf1/Cip1 to resist dexamethasone-induced apoptosis in osteoblastic cells. Free Radical Biology and Medicine, 137, 1-12. doi:10.1016/j.freeradbiomed.2019.04.014 es_ES
dc.description.references Yamamoto, H., Saito, M., Goto, T., Ueshima, K., Ishida, M., Hayashi, S., … Kubo, T. (2019). Heme oxygenase-1 prevents glucocorticoid and hypoxia-induced apoptosis and necrosis of osteocyte-like cells. Medical Molecular Morphology, 52(3), 173-180. doi:10.1007/s00795-018-00215-0 es_ES
dc.description.references Blum, A., & Adawi, M. (2019). RETRACTED: Rheumatoid arthritis (RA) and cardiovascular disease. Autoimmunity Reviews, 18(7), 679-690. doi:10.1016/j.autrev.2019.05.005 es_ES
dc.description.references Hot, A., Lenief, V., & Miossec, P. (2012). Combination of IL-17 and TNFα induces a pro-inflammatory, pro-coagulant and pro-thrombotic phenotype in human endothelial cells. Annals of the Rheumatic Diseases, 71(5), 768-776. doi:10.1136/annrheumdis-2011-200468 es_ES
dc.description.references Full, L. E., & Monaco, C. (2010). Targeting Inflammation as a Therapeutic Strategy in Accelerated Atherosclerosis in Rheumatoid Arthritis. Cardiovascular Therapeutics, 29(4), 231-242. doi:10.1111/j.1755-5922.2010.00159.x es_ES
dc.description.references Dai, L., Lamb, D. J., Leake, D. S., Kus, M. L., Jones, H. W., Morris, C. J., & Winyard, P. G. (2000). Evidence for oxidised low density lipoprotein in synovial fluid from rheumatoid arthritis patients. Free Radical Research, 32(6), 479-486. doi:10.1080/10715760000300481 es_ES
dc.description.references Shimizu, H., Takahashi, T., Suzuki, T., Yamasaki, A., Fujiwara, T., Odaka, Y., … Akagi, R. (2000). Protective effect of heme oxygenase induction in ischemic acute renal failure. Critical Care Medicine, 28(3), 809-817. doi:10.1097/00003246-200003000-00033 es_ES
dc.description.references Yang, L., Quan, S., Nasjletti, A., Laniado-Schwartzman, M., & Abraham, N. G. (2004). Heme Oxygenase-1 Gene Expression Modulates Angiotensin II–Induced Increase in Blood Pressure. Hypertension, 43(6), 1221-1226. doi:10.1161/01.hyp.0000126287.62060.e6 es_ES
dc.description.references Hall, A. J., Stubbs, B., Mamas, M. A., Myint, P. K., & Smith, T. O. (2015). Association between osteoarthritis and cardiovascular disease: Systematic review and meta-analysis. European Journal of Preventive Cardiology, 23(9), 938-946. doi:10.1177/2047487315610663 es_ES
dc.description.references Bijlsma, J. W., Berenbaum, F., & Lafeber, F. P. (2011). Osteoarthritis: an update with relevance for clinical practice. The Lancet, 377(9783), 2115-2126. doi:10.1016/s0140-6736(11)60243-2 es_ES
dc.description.references Eymard, F., Parsons, C., Edwards, M. H., Petit-Dop, F., Reginster, J.-Y., Bruyère, O., … Chevalier, X. (2015). Diabetes is a risk factor for knee osteoarthritis progression. Osteoarthritis and Cartilage, 23(6), 851-859. doi:10.1016/j.joca.2015.01.013 es_ES
dc.description.references Puenpatom, R. A., & Victor, T. W. (2009). Increased Prevalence of Metabolic Syndrome in Individuals with Osteoarthritis: An Analysis of NHANES III Data. Postgraduate Medicine, 121(6), 9-20. doi:10.3810/pgm.2009.11.2073 es_ES
dc.description.references Sellam, J., & Berenbaum, F. (2013). Is osteoarthritis a metabolic disease? Joint Bone Spine, 80(6), 568-573. doi:10.1016/j.jbspin.2013.09.007 es_ES
dc.description.references Drummond, G. S., Baum, J., Greenberg, M., Lewis, D., & Abraham, N. G. (2019). HO-1 overexpression and underexpression: Clinical implications. Archives of Biochemistry and Biophysics, 673, 108073. doi:10.1016/j.abb.2019.108073 es_ES
dc.description.references Hunter, D. J., & Bierma-Zeinstra, S. (2019). Osteoarthritis. The Lancet, 393(10182), 1745-1759. doi:10.1016/s0140-6736(19)30417-9 es_ES
dc.description.references Ma, Q., & He, X. (2012). Molecular Basis of Electrophilic and Oxidative Defense: Promises and Perils of Nrf2. Pharmacological Reviews, 64(4), 1055-1081. doi:10.1124/pr.110.004333 es_ES
dc.description.references Cuadrado, A., Rojo, A. I., Wells, G., Hayes, J. D., Cousin, S. P., Rumsey, W. L., … Dinkova-Kostova, A. T. (2019). Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nature Reviews Drug Discovery, 18(4), 295-317. doi:10.1038/s41573-018-0008-x es_ES
dc.description.references Motterlini, R., Nikam, A., Manin, S., Ollivier, A., Wilson, J. L., Djouadi, S., … Foresti, R. (2019). HYCO-3, a dual CO-releaser/Nrf2 activator, reduces tissue inflammation in mice challenged with lipopolysaccharide. Redox Biology, 20, 334-348. doi:10.1016/j.redox.2018.10.020 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem