Mostrar el registro sencillo del ítem
dc.contributor.author | Cuesta Frau, David | es_ES |
dc.contributor.author | Vargas-Rojo, B. | es_ES |
dc.date.accessioned | 2021-05-28T03:34:53Z | |
dc.date.available | 2021-05-28T03:34:53Z | |
dc.date.issued | 2020 | es_ES |
dc.identifier.issn | 1547-1063 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166920 | |
dc.description.abstract | [EN] Despite its widely demonstrated usefulness, there is still room for improvement in the basic Permutation Entropy (PE) algorithm, as several subsequent studies have proposed in the recent years. For example, some improved PE variants try to address possible PE weaknesses, such as its only focus on ordinal information, and not on amplitude, or the possible detrimental impact of equal values in subsequences due to motif ambiguity. Other evolved PE methods try to reduce the influence of input parameters. A good representative of this last point is the Bubble Entropy (BE) method. BE is based on sorting relations instead of ordinal patterns, and its promising capabilities have not been extensively assessed yet. The objective of the present study was to comparatively assess the classification performance of this new method, and study and exploit the possible synergies between PE and BE. The claimed superior performance of BE over PE was first evaluated by conducting a series of time series classification tests over a varied and diverse experimental set. The results of this assessment apparently suggested that there is a complementary relationship between PE and BE, instead of a superior/inferior relationship. A second set of experiments using PE and BE simultaneously as the input features of a clustering algorithm, demonstrated that with a proper algorithm configuration, classification accuracy and robustness can benefit from both measures. | es_ES |
dc.language | Inglés | es_ES |
dc.relation.ispartof | Mathematical Biosciences and Engineering | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Permutation Entropy | es_ES |
dc.subject | Bubble Entropy | es_ES |
dc.subject | Signal classification | es_ES |
dc.subject | Clustering | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | Permutation Entropy and Bubble Entropy: Possible interactions and synergies between order and sorting relations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3934/mbe.2020086 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.description.bibliographicCitation | Cuesta Frau, D.; Vargas-Rojo, B. (2020). Permutation Entropy and Bubble Entropy: Possible interactions and synergies between order and sorting relations. Mathematical Biosciences and Engineering. 17(2):1637-1658. https://doi.org/10.3934/mbe.2020086 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3934/mbe.2020086 | es_ES |
dc.description.upvformatpinicio | 1637 | es_ES |
dc.description.upvformatpfin | 1658 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.pmid | 32233600 | es_ES |
dc.relation.pasarela | S\401345 | es_ES |
dc.description.references | 1. C. Bandt and B. Pompe, Permutation entropy: A natural complexity measure for time series, <i>Phys. Rev. Lett.</i>, 88 (2002), 174102. | es_ES |
dc.description.references | 2. M. Zanin, L. Zunino, O. A. Rosso and D. Papo, Permutation entropy and its main biomedical and econophysics applications: A review, <i>Entropy</i>, 14 (2012), 1553-1577. | es_ES |
dc.description.references | 14. F. Siokis, Credit market jitters in the course of the financial crisis: A permutation entropy approach in measuring informational efficiency in financial assets, <i>Phys. A Statist. Mechan. Appl.</i>, 499 (2018). | es_ES |
dc.description.references | 15. A. F. Bariviera, L. Zunino, M. B. Guercio, L. Martinez and O. Rosso, Efficiency and credit ratings: A permutation-information-theory analysis, <i>J. Statist. Mechan. Theory Exper.</i>, 2013 (2013), P08007. | es_ES |
dc.description.references | 16. A. F. Bariviera, M. B. Guercio, L. Martinez and O. Rosso, A permutation information theory tour through different interest rate maturities: the libor case, <i>Philos. Transact. Royal Soc. A Math.</i> <i>Phys. Eng. Sci.</i>, 373 (2015). | es_ES |
dc.description.references | 20. B. Fadlallah, B. Chen, A. Keil and J. Príncipe, Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information, <i>Phys. Rev. E</i>, 87 (2013), 022911. | es_ES |
dc.description.references | Deng, B., Cai, L., Li, S., Wang, R., Yu, H., Chen, Y., & Wang, J. (2016). Multivariate multi-scale weighted permutation entropy analysis of EEG complexity for Alzheimer’s disease. Cognitive Neurodynamics, 11(3), 217-231. doi:10.1007/s11571-016-9418-9 | es_ES |
dc.description.references | 24. D. Cuesta-Frau, Permutation entropy: Influence of amplitude information on time series classification performance, <i>Math. Biosci. Eng.</i>, 5 (2019), 1-16. | es_ES |
dc.description.references | 25. F. Traversaro, M. Risk, O. Rosso and F. Redelico, An empirical evaluation of alternative methods of estimation for Permutation Entropy in time series with tied values, <i>arXiv e-prints</i>, arXiv:1707.01517 (2017). | es_ES |
dc.description.references | 26. D. Cuesta-Frau, M. Varela-Entrecanales, A. Molina-Picó and B. Vargas, Patterns with equal values in permutation entropy: Do they really matter for biosignal classification?, <i>Complexity</i>, 2018 (2018), 1-15. | es_ES |
dc.description.references | 29. D. Cuesta-Frau, A. Molina-Picó, B. Vargas and P. González, Permutation entropy: Enhancing discriminating power by using relative frequencies vector of ordinal patterns instead of their shannon entropy, <i>Entropy</i>, 21 (2019). | es_ES |
dc.description.references | 30. H. Azami and J. Escudero, Amplitude-aware permutation entropy: Illustration in spike detection and signal segmentation, <i>Comput. Meth. Program. Biomed.</i>, 128 (2016), 40-51. | es_ES |
dc.description.references | 32. G. Manis, M. Aktaruzzaman and R. Sassi, Bubble entropy: An entropy almost free of parameters, <i>IEEE Transact. Biomed. Eng.</i>, 64 (2017), 2711-2718. | es_ES |
dc.description.references | 34. L. Zunino, F. Olivares, F. Scholkmann and O. A. Rosso, Permutation entropy based time series analysis: Equalities in the input signal can lead to false conclusions, <i>Phys. Lett. A</i>, 381 (2017), 1883-1892. | es_ES |
dc.description.references | 38. D. E. Lake, J. S. Richman, M. P. Griffin and J. R. Moorman, Sample entropy analysis of neonatal heart rate variability, <i>Am. J. Physiology-Regulatory Integrat. Comparat. Physiol.</i>, 283 (2002), R789-R797, PMID: 12185014. | es_ES |
dc.description.references | 41. I. Unal, Defining an Optimal Cut-Point Value in ROC Analysis: An Alternative Approach, <i>Comput. Math. Methods Med.</i>, 2017 (2017), 14. | es_ES |
dc.description.references | 47. A. K. Jain, M. N. Murty and P. J. Flynn, Data clustering: A review, <i>ACM Comput. Surv.</i>, 31 (1999), 264-323. | es_ES |
dc.description.references | 51. J. Sander, M. Ester, H.-P. Kriegel and X. Xu, Density-based clustering in spatial databases: The algorithm gdbscan and its applications, <i>Data Min. Knowl. Discov.</i>, 2 (1998), 169-194. | es_ES |
dc.description.references | 52. J. Wu, <i>Advances in K-means Clustering: A Data Mining Thinking</i>, Springer Publishing Company, Incorporated, 2012. | es_ES |
dc.description.references | 53. S. Panda, S. Sahu, P. Jena and S. Chattopadhyay, Comparing fuzzy-c means and k-means clustering techniques: A comprehensive study, in <i>Advances in Computer Science, Engineering</i> & <i>Applications</i> (eds. D. C. Wyld, J. Zizka and D. Nagamalai), Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, 451-460. | es_ES |
dc.description.references | 54. A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, et al., PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals, <i>Circulation</i>, 101 (2000), 215-220. | es_ES |
dc.description.references | 58. R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David and C. E. Elger, Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state, <i>Phys. Rev. E</i>, 64 (2001), 061907. | es_ES |
dc.description.references | 60. N. Iyengar, C. K. Peng, R. Morin, A. L. Goldberger and L. A. Lipsitz, Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics, <i>Am. J. Physiology-Regulatory Integrat.</i> <i>Comparat. Physiol.</i>, 271 (1996), R1078-R1084, PMID: 8898003. | es_ES |