- -

Permutation Entropy and Bubble Entropy: Possible interactions and synergies between order and sorting relations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Permutation Entropy and Bubble Entropy: Possible interactions and synergies between order and sorting relations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cuesta Frau, David es_ES
dc.contributor.author Vargas-Rojo, B. es_ES
dc.date.accessioned 2021-05-28T03:34:53Z
dc.date.available 2021-05-28T03:34:53Z
dc.date.issued 2020 es_ES
dc.identifier.issn 1547-1063 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166920
dc.description.abstract [EN] Despite its widely demonstrated usefulness, there is still room for improvement in the basic Permutation Entropy (PE) algorithm, as several subsequent studies have proposed in the recent years. For example, some improved PE variants try to address possible PE weaknesses, such as its only focus on ordinal information, and not on amplitude, or the possible detrimental impact of equal values in subsequences due to motif ambiguity. Other evolved PE methods try to reduce the influence of input parameters. A good representative of this last point is the Bubble Entropy (BE) method. BE is based on sorting relations instead of ordinal patterns, and its promising capabilities have not been extensively assessed yet. The objective of the present study was to comparatively assess the classification performance of this new method, and study and exploit the possible synergies between PE and BE. The claimed superior performance of BE over PE was first evaluated by conducting a series of time series classification tests over a varied and diverse experimental set. The results of this assessment apparently suggested that there is a complementary relationship between PE and BE, instead of a superior/inferior relationship. A second set of experiments using PE and BE simultaneously as the input features of a clustering algorithm, demonstrated that with a proper algorithm configuration, classification accuracy and robustness can benefit from both measures. es_ES
dc.language Inglés es_ES
dc.relation.ispartof Mathematical Biosciences and Engineering es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Permutation Entropy es_ES
dc.subject Bubble Entropy es_ES
dc.subject Signal classification es_ES
dc.subject Clustering es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Permutation Entropy and Bubble Entropy: Possible interactions and synergies between order and sorting relations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3934/mbe.2020086 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Cuesta Frau, D.; Vargas-Rojo, B. (2020). Permutation Entropy and Bubble Entropy: Possible interactions and synergies between order and sorting relations. Mathematical Biosciences and Engineering. 17(2):1637-1658. https://doi.org/10.3934/mbe.2020086 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3934/mbe.2020086 es_ES
dc.description.upvformatpinicio 1637 es_ES
dc.description.upvformatpfin 1658 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 2 es_ES
dc.identifier.pmid 32233600 es_ES
dc.relation.pasarela S\401345 es_ES
dc.description.references 1. C. Bandt and B. Pompe, Permutation entropy: A natural complexity measure for time series, <i>Phys. Rev. Lett.</i>, 88 (2002), 174102. es_ES
dc.description.references 2. M. Zanin, L. Zunino, O. A. Rosso and D. Papo, Permutation entropy and its main biomedical and econophysics applications: A review, <i>Entropy</i>, 14 (2012), 1553-1577. es_ES
dc.description.references 14. F. Siokis, Credit market jitters in the course of the financial crisis: A permutation entropy approach in measuring informational efficiency in financial assets, <i>Phys. A Statist. Mechan. Appl.</i>, 499 (2018). es_ES
dc.description.references 15. A. F. Bariviera, L. Zunino, M. B. Guercio, L. Martinez and O. Rosso, Efficiency and credit ratings: A permutation-information-theory analysis, <i>J. Statist. Mechan. Theory Exper.</i>, 2013 (2013), P08007. es_ES
dc.description.references 16. A. F. Bariviera, M. B. Guercio, L. Martinez and O. Rosso, A permutation information theory tour through different interest rate maturities: the libor case, <i>Philos. Transact. Royal Soc. A Math.</i> <i>Phys. Eng. Sci.</i>, 373 (2015). es_ES
dc.description.references 20. B. Fadlallah, B. Chen, A. Keil and J. Pr&#237;ncipe, Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information, <i>Phys. Rev. E</i>, 87 (2013), 022911. es_ES
dc.description.references Deng, B., Cai, L., Li, S., Wang, R., Yu, H., Chen, Y., & Wang, J. (2016). Multivariate multi-scale weighted permutation entropy analysis of EEG complexity for Alzheimer’s disease. Cognitive Neurodynamics, 11(3), 217-231. doi:10.1007/s11571-016-9418-9 es_ES
dc.description.references 24. D. Cuesta-Frau, Permutation entropy: Influence of amplitude information on time series classification performance, <i>Math. Biosci. Eng.</i>, 5 (2019), 1-16. es_ES
dc.description.references 25. F. Traversaro, M. Risk, O. Rosso and F. Redelico, An empirical evaluation of alternative methods of estimation for Permutation Entropy in time series with tied values, <i>arXiv e-prints</i>, arXiv:1707.01517 (2017). es_ES
dc.description.references 26. D. Cuesta-Frau, M. Varela-Entrecanales, A. Molina-Pic&#243; and B. Vargas, Patterns with equal values in permutation entropy: Do they really matter for biosignal classification?, <i>Complexity</i>, 2018 (2018), 1-15. es_ES
dc.description.references 29. D. Cuesta-Frau, A. Molina-Pic&#243;, B. Vargas and P. Gonz&#225;lez, Permutation entropy: Enhancing discriminating power by using relative frequencies vector of ordinal patterns instead of their shannon entropy, <i>Entropy</i>, 21 (2019). es_ES
dc.description.references 30. H. Azami and J. Escudero, Amplitude-aware permutation entropy: Illustration in spike detection and signal segmentation, <i>Comput. Meth. Program. Biomed.</i>, 128 (2016), 40-51. es_ES
dc.description.references 32. G. Manis, M. Aktaruzzaman and R. Sassi, Bubble entropy: An entropy almost free of parameters, <i>IEEE Transact. Biomed. Eng.</i>, 64 (2017), 2711-2718. es_ES
dc.description.references 34. L. Zunino, F. Olivares, F. Scholkmann and O. A. Rosso, Permutation entropy based time series analysis: Equalities in the input signal can lead to false conclusions, <i>Phys. Lett. A</i>, 381 (2017), 1883-1892. es_ES
dc.description.references 38. D. E. Lake, J. S. Richman, M. P. Griffin and J. R. Moorman, Sample entropy analysis of neonatal heart rate variability, <i>Am. J. Physiology-Regulatory Integrat. Comparat. Physiol.</i>, 283 (2002), R789-R797, PMID: 12185014. es_ES
dc.description.references 41. I. Unal, Defining an Optimal Cut-Point Value in ROC Analysis: An Alternative Approach, <i>Comput. Math. Methods Med.</i>, 2017 (2017), 14. es_ES
dc.description.references 47. A. K. Jain, M. N. Murty and P. J. Flynn, Data clustering: A review, <i>ACM Comput. Surv.</i>, 31 (1999), 264-323. es_ES
dc.description.references 51. J. Sander, M. Ester, H.-P. Kriegel and X. Xu, Density-based clustering in spatial databases: The algorithm gdbscan and its applications, <i>Data Min. Knowl. Discov.</i>, 2 (1998), 169-194. es_ES
dc.description.references 52. J. Wu, <i>Advances in K-means Clustering: A Data Mining Thinking</i>, Springer Publishing Company, Incorporated, 2012. es_ES
dc.description.references 53. S. Panda, S. Sahu, P. Jena and S. Chattopadhyay, Comparing fuzzy-c means and k-means clustering techniques: A comprehensive study, in <i>Advances in Computer Science, Engineering</i> &amp; <i>Applications</i> (eds. D. C. Wyld, J. Zizka and D. Nagamalai), Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, 451-460. es_ES
dc.description.references 54. A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, et al., PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals, <i>Circulation</i>, 101 (2000), 215-220. es_ES
dc.description.references 58. R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David and C. E. Elger, Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state, <i>Phys. Rev. E</i>, 64 (2001), 061907. es_ES
dc.description.references 60. N. Iyengar, C. K. Peng, R. Morin, A. L. Goldberger and L. A. Lipsitz, Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics, <i>Am. J. Physiology-Regulatory Integrat.</i> <i>Comparat. Physiol.</i>, 271 (1996), R1078-R1084, PMID: 8898003. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem