- -

w-Distances on Fuzzy Metric Spaces and Fixed Points

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

w-Distances on Fuzzy Metric Spaces and Fixed Points

Show simple item record

Files in this item

dc.contributor.author Romaguera Bonilla, Salvador es_ES
dc.date.accessioned 2021-05-28T03:34:56Z
dc.date.available 2021-05-28T03:34:56Z
dc.date.issued 2020-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166921
dc.description.abstract [EN] We propose a notion of w-distance for fuzzy metric spaces, in the sense of Kramosil and Michalek, which allows us to obtain a characterization of complete fuzzy metric spaces via a suitable fixed point theorem that is proved here. Our main result provides a fuzzy counterpart of a renowned characterization of complete metric spaces due to Suzuki and Takahashi. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Fuzzy metric space es_ES
dc.subject Complete es_ES
dc.subject W-distance es_ES
dc.subject Fixed point es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title w-Distances on Fuzzy Metric Spaces and Fixed Points es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/math8111909 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Romaguera Bonilla, S. (2020). w-Distances on Fuzzy Metric Spaces and Fixed Points. Mathematics. 8(11):1-9. https://doi.org/10.3390/math8111909 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/math8111909 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 11 es_ES
dc.identifier.eissn 2227-7390 es_ES
dc.relation.pasarela S\421970 es_ES
dc.description.references Suzuki, T., & Takahashi, W. (1996). Fixed point theorems and characterizations of metric completeness. Topological Methods in Nonlinear Analysis, 8(2), 371. doi:10.12775/tmna.1996.040 es_ES
dc.description.references Suzuki, T. (2001). Generalized Distance and Existence Theorems in Complete Metric Spaces. Journal of Mathematical Analysis and Applications, 253(2), 440-458. doi:10.1006/jmaa.2000.7151 es_ES
dc.description.references Al-Homidan, S., Ansari, Q. H., & Yao, J.-C. (2008). Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory. Nonlinear Analysis: Theory, Methods & Applications, 69(1), 126-139. doi:10.1016/j.na.2007.05.004 es_ES
dc.description.references Lakzian, H., & Lin, I.-J. (2012). The Existence of Fixed Points for Nonlinear Contractive Maps in Metric Spaces with -Distances. Journal of Applied Mathematics, 2012, 1-11. doi:10.1155/2012/161470 es_ES
dc.description.references Alegre, C., Marín, J., & Romaguera, S. (2014). A fixed point theorem for generalized contractions involving w-distances on complete quasi-metric spaces. Fixed Point Theory and Applications, 2014(1). doi:10.1186/1687-1812-2014-40 es_ES
dc.description.references Alegre, C., & Marín, J. (2016). Modified w-distances on quasi-metric spaces and a fixed point theorem on complete quasi-metric spaces. Topology and its Applications, 203, 32-41. doi:10.1016/j.topol.2015.12.073 es_ES
dc.description.references Lakzian, H., Rakočević, V., & Aydi, H. (2019). Extensions of Kannan contraction via w-distances. Aequationes mathematicae, 93(6), 1231-1244. doi:10.1007/s00010-019-00673-6 es_ES
dc.description.references Alegre, C., Fulga, A., Karapinar, E., & Tirado, P. (2020). A Discussion on p-Geraghty Contraction on mw-Quasi-Metric Spaces. Mathematics, 8(9), 1437. doi:10.3390/math8091437 es_ES
dc.description.references Abbas, M., Ali, B., & Romaguera, S. (2015). Multivalued Caristi’s type mappings in fuzzy metric spaces and a characterization of fuzzy metric completeness. Filomat, 29(6), 1217-1222. doi:10.2298/fil1506217a es_ES
dc.description.references Romaguera, S., & Tirado, P. (2020). Characterizing Complete Fuzzy Metric Spaces Via Fixed Point Results. Mathematics, 8(2), 273. doi:10.3390/math8020273 es_ES
dc.description.references Kirk, W. A. (1976). Caristi’s fixed point theorem and metric convexity. Colloquium Mathematicum, 36(1), 81-86. doi:10.4064/cm-36-1-81-86 es_ES
dc.description.references Hu, T. K. (1967). On a Fixed-Point Theorem for Metric Spaces. The American Mathematical Monthly, 74(4), 436. doi:10.2307/2314587 es_ES
dc.description.references Subrahmanyam, P. V. (1975). Completeness and fixed-points. Monatshefte f�r Mathematik, 80(4), 325-330. doi:10.1007/bf01472580 es_ES
dc.description.references Grabiec, M. (1988). Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 27(3), 385-389. doi:10.1016/0165-0114(88)90064-4 es_ES
dc.description.references Radu, V. (1987). Some fixed point theorems probabilistic metric spaces. Lecture Notes in Mathematics, 125-133. doi:10.1007/bfb0072718 es_ES
dc.description.references Riaz, M., & Hashmi, M. R. (2018). Fixed points of fuzzy neutrosophic soft mapping with decision-making. Fixed Point Theory and Applications, 2018(1). doi:10.1186/s13663-018-0632-5 es_ES
dc.description.references Riaz, M., & Hashmi, M. R. (2019). Linear Diophantine fuzzy set and its applications towards multi-attribute decision-making problems. Journal of Intelligent & Fuzzy Systems, 37(4), 5417-5439. doi:10.3233/jifs-190550 es_ES
dc.description.references Hashmi, M. R., & Riaz, M. (2020). A novel approach to censuses process by using Pythagorean m-polar fuzzy Dombi’s aggregation operators. Journal of Intelligent & Fuzzy Systems, 38(2), 1977-1995. doi:10.3233/jifs-190613 es_ES


This item appears in the following Collection(s)

Show simple item record