- -

Broadband random optoelectronic oscillator

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Broadband random optoelectronic oscillator

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ge, Zengting es_ES
dc.contributor.author Hao, Tengfei es_ES
dc.contributor.author Capmany Francoy, José es_ES
dc.contributor.author Li, Wei es_ES
dc.contributor.author Zhu, Ninghua es_ES
dc.contributor.author Li, Ming es_ES
dc.date.accessioned 2021-05-28T03:35:25Z
dc.date.available 2021-05-28T03:35:25Z
dc.date.issued 2020-11-12 es_ES
dc.identifier.issn 2041-1723 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166927
dc.description.abstract [EN] Random scattering of light in transmission media has attracted a great deal of attention in the field of photonics over the past few decades. An optoelectronic oscillator (OEO) is a microwave photonic system offering unbeatable features for the generation of microwave oscillations with ultra-low phase noise. Here, we combine the unique features of random scattering and OEO technologies by proposing an OEO structure based on random distributed feedback. Thanks to the random distribution of Rayleigh scattering caused by inhomogeneities within the glass structure of the fiber, we demonstrate the generation of ultra-wideband (up to 40¿GHz from DC) random microwave signals in an open cavity OEO. The generated signals enjoy random characteristics, and their frequencies are not limited by a fixed cavity length figure. The proposed device has potential in many fields such as random bit generation, radar systems, electronic interference and countermeasures, and telecommunications. es_ES
dc.description.sponsorship Thanks N. Shi and Y. Yang for comments and discussion. This work was supported by the National Key Research and Development Program of China under 2018YFB2201902 and the National Natural Science Foundation of China under 61925505. This work was also partly supported by the National Key Research and Development Program of China under 2018YFB2201901, 2018YFB2201903, and the National Natural Science Foundation of China under 61535012 and 61705217. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Communications es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Broadband random optoelectronic oscillator es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41467-020-19596-x es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//61535012/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//61705217/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//61925505/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NKRDPC//2018YFB2201902/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NKRDPC//2018YFB2201901/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NKRDPC//2018YFB2201903/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Ge, Z.; Hao, T.; Capmany Francoy, J.; Li, W.; Zhu, N.; Li, M. (2020). Broadband random optoelectronic oscillator. Nature Communications. 11(1):1-8. https://doi.org/10.1038/s41467-020-19596-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41467-020-19596-x es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 33184294 es_ES
dc.identifier.pmcid PMC7665046 es_ES
dc.relation.pasarela S\434355 es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.contributor.funder National Key Research and Development Program of China es_ES
dc.description.references Feng, S., Kane, C., Lee, P. A. & Stone, A. D. Correlations and fluctuations of coherent wave transmission through disordered media. Phys. Rev. Lett. 61, 834 (1988). es_ES
dc.description.references Wiersma, D. S. & Cavalieri, S. Light emission: a temperature-tunable random laser. Nature 414, 708 (2001). es_ES
dc.description.references Wiersma, D. S. The physics and applications of random lasers. Nat. Phys. 4, 359 (2008). es_ES
dc.description.references Turitsyn, S. K. et al. Random distributed feedback fibre laser. Nat. Photonics 4, 231–235 (2010). es_ES
dc.description.references Babin, S. A., El-Taher, A. E., Harper, P., Podivilov, E. V. & Turitsyn, S. K. Tunable random fiber laser. Phys. Rev. A 84, 021805 (2011). es_ES
dc.description.references Turitsyn, S. K. et al. Random distributed feedback fibre lasers. Phys. Rep. 542, 133–193 (2014). es_ES
dc.description.references Barnoski, M., Rourke, M., Jensen, S. M. & Melville, R. T. Optical time domain reflectometer. Appl. Opt. 16, 2375–2379 (1977). es_ES
dc.description.references Yao, X. S. & Maleki, L. Optoelectronic microwave oscillator. JOSA B 13, 1725–1735 (1996). es_ES
dc.description.references Maleki, L. Sources: the optoelectronic oscillator. Nat. Photonics 5, 728 (2011). es_ES
dc.description.references Yao, X. S. & Maleki, L. Multiloop optoelectronic oscillator. IEEE J. Quantum Electron 36, 79–84 (2000). es_ES
dc.description.references Hao, T. et al. Breaking the limitation of mode building time in an optoelectronic oscillator. Nat. Commun. 9, 1839 (2018). es_ES
dc.description.references Zhang, W. & Yao, J. Silicon photonic integrated optoelectronic oscillator for frequency-tunable microwave generation. J. Lightwave Technol. 36, 4655–4663 (2018). es_ES
dc.description.references Hao, T. et al. Toward Monolithic Integration of OEOs: from systems to chips. J. Lightwave Technol. 36, 4565–4582 (2018). es_ES
dc.description.references Zhang, J. & Yao, J. Parity-time–symmetric optoelectronic oscillator. Sci. Adv. 4, eaar6782 (2018). es_ES
dc.description.references Liu, Y. et al. Observation of parity-time symmetry in microwave photonics. Light Sci. Appl. 7, 38 (2018). es_ES
dc.description.references Nakazawa, M. Rayleigh backscattering theory for single-mode optical fibers. JOSA 73, 1175–1180 (1983). es_ES
dc.description.references Hartog, A. & Gold, M. On the theory of backscattering in single-mode optical fibers. J. Lightwave Technol. 2, 76–82 (1984). es_ES
dc.description.references Eickhoff, W., & Ulrich, R. Statistics of backscattering in single-mode fiber. In Optical Fiber Communication Conference. Optical Society of America (1981). es_ES
dc.description.references Alekseev, A. E., Tezadov, Y. A. & Potapov, V. T. Statistical properties of backscattered semiconductor laser radiation with different degrees of coherence. Quantum Electron 42, 76–81 (2012). es_ES
dc.description.references Gysel, P. & Staubli, R. K. Statistical properties of Rayleigh backscattering in single-mode fibers. J. Lightwave Technol. 8, 561–567 (1990). es_ES
dc.description.references Staubli, R. K. & Gysel, P. Statistical properties of single-mode fiber rayleigh backscattered intensity and resulting detector current. IEEE Trans. Commun. 40, 1091–1097 (1992). es_ES
dc.description.references Levy, E. C., Horowitz, M. & Menyuk, C. R. Modeling optoelectronic oscillators. JOSA B 26, 148–159 (2009). es_ES
dc.description.references Yariv, A. Introduction to Optical Electronics 2nd edn. (Holt, Rinehart and Winston, New York, 1976). es_ES
dc.description.references Aoki, Y., Tajima, K. & Mito, I. Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems. J. Lightwave Technol. 6, 710–719 (1988). es_ES
dc.description.references Song, H. J., Shimizu, N., Kukutsu, N., Nagatsuma, T. & Kado, Y. Microwave photonic noise source from microwave to sub-terahertz wave bands and its applications to noise characterization. IEEE Trans. Microw. Theory Tech. 56, 2989–2997 (2008). es_ES
dc.description.references Chembo, Y. K., et al. Optoelectronic oscillators with time-delayed feedback. Rev. Mod. Phys. 91, 035006 (2019). es_ES
dc.description.references Callan, K. E. et al. Broadband chaos generated by an optoelectronic oscillator. Phys. Rev. Lett. 104, 113901 (2010). es_ES
dc.description.references Lavrov, R. et al. Electro-optic delay oscillator with nonlocal nonlinearity: Optical phase dynamics, chaos, and synchronization. Phys. Rev. E. 80, 026207 (2009). es_ES
dc.description.references Wolf, A., Swift, J. B., Swinney, H. L. & Vastano, J. A. Determining Lyapunov exponents from a time series. Phys. D. 16, 285–317 (1985). es_ES
dc.description.references Grassberger, P. & Procaccia, I. Characterization of strange attractors. Phys. Rev. Lett. 50, 346 (1983). es_ES
dc.description.references Grassberger, P. & Procaccia, I. Measuring the strangeness of strange attractors. Phys. D. 9, 189–208 (1983). es_ES
dc.description.references Romeira, B. et al. Broadband chaotic signals and breather oscillations in an optoelectronic oscillator incorporating a microwave photonic filter. J. Lightwave Technol. 32, 3933–3942 (2014). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem