- -

Sound absorption of textile fabrics doped with microcapsules

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sound absorption of textile fabrics doped with microcapsules

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Atiénzar-Navarro, Roberto es_ES
dc.contributor.author BONET-ARACIL, MARILÉS es_ES
dc.contributor.author Gisbert Paya, Jaime es_ES
dc.contributor.author Rey Tormos, Romina María del es_ES
dc.contributor.author Picó Vila, Rubén es_ES
dc.date.accessioned 2021-05-29T03:32:34Z
dc.date.available 2021-05-29T03:32:34Z
dc.date.issued 2020-07 es_ES
dc.identifier.issn 0003-682X es_ES
dc.identifier.uri http://hdl.handle.net/10251/166960
dc.description.abstract [EN] The use of microcapsules is increasing in the textile industry and play an important role in the field of acoustical porous materials in order to adopt solutions for the control of noise. In this work, we present an experimental study of the acoustic effect of woven textile fabrics doped with microcapsules by using the padding technique. For this purpose, measurements with the fabric backed by an air-cavity or by a rigid wall in the impedance tube have been done. A comparative analysis of acoustic effect by using cotton fabrics with the same yarn density but different doping percentage is presented. We have investigated the influence of the sound damping effect of doping six different textile woven fabrics with the same concentration of microcapsules. The results show that the variation on the sound absorption coefficient of doped woven fabrics depends on the type of fabric, the concentration of microcapsules and the experimental setup. es_ES
dc.description.sponsorship Authors acknowledge the support of the Ministry of Economy and Innovation (MINECO) and European Union FEDER through project FIS2015-65998-C2-2 and by projects AICO/2016/060 and ACIF/2017/073 by Regional Ministry of Education, Culture and Sport of the Generalitat Valenciana and with the support of European Structural Investment Funds (ESIF-European Union). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Applied Acoustics es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Sound absorption es_ES
dc.subject Microcapsules es_ES
dc.subject Padding technique es_ES
dc.subject Woven fabrics es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification INGENIERIA TEXTIL Y PAPELERA es_ES
dc.title Sound absorption of textile fabrics doped with microcapsules es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.apacoust.2020.107285 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FIS2015-65998-C2-2-P/ES/ONDAS ACUSTICAS EN CRISTALES, MEDIOS ESTRUCTURADOS Y METAMATERIALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2016%2F060/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2017%2F073/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera es_ES
dc.description.bibliographicCitation Atiénzar-Navarro, R.; Bonet-Aracil, M.; Gisbert Paya, J.; Rey Tormos, RMD.; Picó Vila, R. (2020). Sound absorption of textile fabrics doped with microcapsules. Applied Acoustics. 164:1-9. https://doi.org/10.1016/j.apacoust.2020.107285 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.apacoust.2020.107285 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 164 es_ES
dc.relation.pasarela S\404061 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder European Structural and Investment Funds es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Berglund B, Lindvall T, Schwela DH. World Health Organization. Guidelines for community noise. Geneva, Switzerland, WHO; 1999. Available online: URL: http://www.euro.who.int/en/health-topics/environment-and-health/noise (accessed on 19 September 2019). es_ES
dc.description.references Alexandre A, Barde J-P. Organization for Economic Cooperation and Development. Fighting Noise in 1990s. Eds. OECD Publications (Paris, France); 1991. es_ES
dc.description.references Environmental noise. Available online: URL: https://www.eea.europa.eu/airs/2018/environment-and-health/environmental-noise (accessed on 19 September 2019). es_ES
dc.description.references Portal Español del Programa Marco de Investigación e Innovación de la Unión Europea. Horizonte; 2020. Available online: URL: https://eshorizonte2020.es/ (accessed on 19 September 2019). es_ES
dc.description.references Portal Español del Programa Marco de Investigación e Innovación de la Unión Europea. Horizonte 2030. Available online: URL:https://h2030.es/ (accessed on 19 September 2019). es_ES
dc.description.references Ballagh, K. O. (1996). Acoustical properties of wool. Applied Acoustics, 48(2), 101-120. doi:10.1016/0003-682x(95)00042-8 es_ES
dc.description.references Benkreira, H., Khan, A., & Horoshenkov, K. V. (2011). Sustainable acoustic and thermal insulation materials from elastomeric waste residues. Chemical Engineering Science, 66(18), 4157-4171. doi:10.1016/j.ces.2011.05.047 es_ES
dc.description.references Maderuelo-Sanz, R., Nadal-Gisbert, A. V., Crespo-Amorós, J. E., & Parres-García, F. (2012). A novel sound absorber with recycled fibers coming from end of life tires (ELTs). Applied Acoustics, 73(4), 402-408. doi:10.1016/j.apacoust.2011.12.001 es_ES
dc.description.references Liu, D., Xia, K., Chen, W., Yang, R., & Wang, B. (2011). Preparation and design of green sound-absorbing materials via pulp fibrous models. Journal of Composite Materials, 46(4), 399-407. doi:10.1177/0021998311429881 es_ES
dc.description.references Del Rey R Ma, Bertó Carbó L, Alba Fernández J, Sanchis Rico VJ. Obtención de soluciones acústicas a partir de reciclado textil mediante tecnología. WET-LAID. Avances en ingeniería medioambiental, vol. 6, pp. 73–86 (book chapter); 2012. Editorial Marfil. ISBN 978-84-268-1637-5. es_ES
dc.description.references Rushforth, I. M., Horoshenkov, K. V., Miraftab, M., & Swift, M. J. (2005). Impact sound insulation and viscoelastic properties of underlay manufactured from recycled carpet waste. Applied Acoustics, 66(6), 731-749. doi:10.1016/j.apacoust.2004.10.005 es_ES
dc.description.references Shoshani, Y., & Rosenhouse, G. (1992). Noise-insulating blankets made of textile. Applied Acoustics, 35(2), 129-138. doi:10.1016/0003-682x(92)90027-p es_ES
dc.description.references Pieren, R., Schäffer, B., Schoenwald, S., & Eggenschwiler, K. (2016). Sound absorption of textile curtains – theoretical models and validations by experiments and simulations. Textile Research Journal, 88(1), 36-48. doi:10.1177/0040517516673337 es_ES
dc.description.references Sakagami, K., Kiyama, M., Morimoto, M., & Takahashi, D. (1998). Detailed analysis of the acoustic properties of a permeable membrane. Applied Acoustics, 54(2), 93-111. doi:10.1016/s0003-682x(97)00085-6 es_ES
dc.description.references Kang, J., & Fuchs, H. V. (1999). PREDICTING THE ABSORPTION OF OPEN WEAVE TEXTILES AND MICRO-PERFORATED MEMBRANES BACKED BY AN AIR SPACE. Journal of Sound and Vibration, 220(5), 905-920. doi:10.1006/jsvi.1998.1977 es_ES
dc.description.references Shoshani, Y., & Rosenhouse, G. (1990). Noise absorption by woven fabrics. Applied Acoustics, 30(4), 321-333. doi:10.1016/0003-682x(90)90081-5 es_ES
dc.description.references Na, Y., Lancaster, J., Casali, J., & Cho, G. (2007). Sound Absorption Coefficients of Micro-fiber Fabrics by Reverberation Room Method. Textile Research Journal, 77(5), 330-335. doi:10.1177/0040517507078743 es_ES
dc.description.references Soltani, P., & Zerrebini, M. (2012). The analysis of acoustical characteristics and sound absorption coefficient of woven fabrics. Textile Research Journal, 82(9), 875-882. doi:10.1177/0040517511402121 es_ES
dc.description.references Ekici, B., Kentli, A., & Küçük, H. (2012). Improving Sound Absorption Property of Polyurethane Foams by Adding Tea-Leaf Fibers. Archives of Acoustics, 37(4), 515-520. doi:10.2478/v10168-012-0052-1 es_ES
dc.description.references Reixach, R., Del Rey, R., Alba, J., Arbat, G., Espinach, F. X., & Mutjé, P. (2015). Acoustic properties of agroforestry waste orange pruning fibers reinforced polypropylene composites as an alternative to laminated gypsum boards. Construction and Building Materials, 77, 124-129. doi:10.1016/j.conbuildmat.2014.12.041 es_ES
dc.description.references Padhye R, Nayak R. Acoustic Textiles. Textile Science and Clothing Technology. Melbourne, Victoria, Australia, Springer; 2016. es_ES
dc.description.references Del Rey, R., Alba, J., Blanes, M., & Marco, B. (2013). Absorción acústica de cortinas textiles en función del vuelo. Materiales de Construcción, 63(312), 569-580. doi:10.3989/mc.2013.05512 es_ES
dc.description.references Hanna, Y. I., & Kandil, M. M. (1991). Sound absorbing double curtains from local textile materials. Applied Acoustics, 34(4), 281-291. doi:10.1016/0003-682x(91)90011-3 es_ES
dc.description.references Houtsma, A. J. M., Martin, H. J., Hak, C. C. J. M., & van Donselaar, C. J. (1996). Measuring the effectiveness of special acoustic provisions in a concert hall. The Journal of the Acoustical Society of America, 100(4), 2803-2803. doi:10.1121/1.416542 es_ES
dc.description.references Chevillotte, F. (2012). Controlling sound absorption by an upstream resistive layer. Applied Acoustics, 73(1), 56-60. doi:10.1016/j.apacoust.2011.07.005 es_ES
dc.description.references Segura-Alcaraz, P., Segura-Alcaraz, J., Montava, I., & Bonet-Aracil, M. (2018). The Use of Fabrics to Improve the Acoustic Absorption: Influence of the Woven Fabric Thread Density Over a Nonwoven. Autex Research Journal, 18(3), 269-280. doi:10.1515/aut-2018-0006 es_ES
dc.description.references Nelson, G. (2008). Microencapsulation in textile finishing. Review of Progress in Coloration and Related Topics, 31(1), 57-64. doi:10.1111/j.1478-4408.2001.tb00138.x es_ES
dc.description.references Bonet Aracil, M. Á., Monllor, P., Capablanca, L., Gisbert, J., Díaz, P., & Montava, I. (2015). A comparison between padding and bath exhaustion to apply microcapsules onto cotton. Cellulose, 22(3), 2117-2127. doi:10.1007/s10570-015-0600-8 es_ES
dc.description.references Monllor, P., Capablanca, L., Gisbert, J., Díaz, P., Montava, I., & Bonet, Á. (2009). Improvement of Microcapsule Adhesion to Fabrics. Textile Research Journal, 80(7), 631-635. doi:10.1177/0040517509346444 es_ES
dc.description.references Holme, I. (2007). Innovative technologies for high performance textiles. Coloration Technology, 123(2), 59-73. doi:10.1111/j.1478-4408.2007.00064.x es_ES
dc.description.references Deasy PB. Microencapsulation and related drug processes. United States, New York: Marcel Dekker; 1984, vol. 20, pp. 234–237. es_ES
dc.description.references Zuckerman J, Pushaw R, Perry B, Wyner D. Fabric coating composition containing energy absorbing phase change material; 2001. US Patent 6, 207, 738. es_ES
dc.description.references Ono A, Fuse T, Miyamoto O, Makino S, Yamato Y, Kametani S, Tokura S, Tanaka H, Ito T, Nakao H, Tokuoka S, Takeda T. Fibrous structures having a durable fragrance and a process for preparing the same; 1990. US Patent 4, 917, 920. es_ES
dc.description.references Samson R, McKinney J, Russell J. Fabrics with insect repellent tent fabric; 1993. US Patent 5, 198, 287. es_ES
dc.description.references Gisbert, J., Ibañez, F., Bonet, M., Monllor, P., Díaz, P., & Montava, I. (2009). Increasing hydration of the epidermis by microcapsules in sterilized products. Journal of Applied Polymer Science, 113(4), 2282-2286. doi:10.1002/app.30210 es_ES
dc.description.references Zhou, H., Li, B., & Huang, G. (2006). Sound absorption characteristics of polymer microparticles. Journal of Applied Polymer Science, 101(4), 2675-2679. doi:10.1002/app.23911 es_ES
dc.description.references Cheng, F., Lu, P., Ren, P., Chen, J., Ou, Y., Lin, M., & Liu, D. (2016). Preparation and Properties of Foamed Cellulose-Polymer Microsphere Hybrid Materials for Sound Absorption. BioResources, 11(3). doi:10.15376/biores.11.3.7394-7405 es_ES
dc.description.references Zhi, C., & Long, H. (2016). Sound Absorption Properties of Syntactic Foam Reinforced by Warp-knitted Spacer Fabric. Cellular Polymers, 35(5), 271-286. doi:10.1177/026248931603500503 es_ES
dc.description.references Monllor, P., Sánchez, L., Cases, F., & Bonet, M. A. (2009). Thermal Behavior of Microencapsulated Fragrances on Cotton Fabrics. Textile Research Journal, 79(4), 365-380. doi:10.1177/0040517508097520 es_ES
dc.description.references Hong, K., & Park, S. (1999). Melamine resin microcapsules containing fragrant oil: synthesis and characterization. Materials Chemistry and Physics, 58(2), 128-131. doi:10.1016/s0254-0584(98)00263-6 es_ES
dc.description.references Ré, M. ., & Biscans, B. (1999). Preparation of microspheres of ketoprofen with acrylic polymers by a quasi-emulsion solvent diffusion method. Powder Technology, 101(2), 120-133. doi:10.1016/s0032-5910(98)00163-6 es_ES
dc.description.references Chen, Y., & Jiang, N. (2007). Carbonized and Activated Non-wovens as High-Performance Acoustic Materials: Part I Noise Absorption. Textile Research Journal, 77(10), 785-791. doi:10.1177/0040517507080691 es_ES
dc.description.references Pieren, R. (2012). Sound absorption modeling of thin woven fabrics backed by an air cavity. Textile Research Journal, 82(9), 864-874. doi:10.1177/0040517511429604 es_ES
dc.description.references Pieren, R. Sound Absorption Modelling of Thin, Lightweight Curtains. Proceedings – European Conference on Noise Control; 2012. es_ES
dc.description.references ISO 10534-2. Determination of sound absorption coefficient and impedance in impedances tubes. Part 2: Transfer-function method. Acoustics; 1998. es_ES
dc.description.references Ingard, K. U., & Dear, T. A. (1985). Measurement of acoustic flow resistance. Journal of Sound and Vibration, 103(4), 567-572. doi:10.1016/s0022-460x(85)80024-9 es_ES
dc.description.references Azizi, N., Ladhari, N., & Majdoub, M. (2011). Elaboration and Characterization of Polyurethane-based Microcapsules: Application in Textile. Asian Journal of Textile, 1(3), 130-137. doi:10.3923/ajt.2011.130.137 es_ES
dc.description.references Aracil, M. Á. B., Bou-Belda, E., Monllor, P., & Gisbert, J. (2015). Binder effectiveness of microcapsules applied onto cotton fabrics during laundry. The Journal of The Textile Institute, 107(3), 300-306. doi:10.1080/00405000.2015.1029808 es_ES
dc.description.references Tözüm, M. S., & Alay Aksoy, S. (2015). Investigation of tactile comfort properties of the fabrics treated with microcapsules containing phase change materials (PCMs microcapsules). The Journal of The Textile Institute, 107(9), 1203-1212. doi:10.1080/00405000.2015.1099374 es_ES
dc.description.references Monllor, P., Bonet, M. A., & Cases, F. (2007). Characterization of the behaviour of flavour microcapsules in cotton fabrics. European Polymer Journal, 43(6), 2481-2490. doi:10.1016/j.eurpolymj.2007.04.004 es_ES
dc.description.references Gao, D., Lyu, L., Lyu, B., Ma, J., Yang, L., & Zhang, J. (2017). Multifunctional cotton fabric loaded with Ce doped ZnO nanorods. Materials Research Bulletin, 89, 102-107. doi:10.1016/j.materresbull.2017.01.030 es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem