Mostrar el registro sencillo del ítem
dc.contributor.author | Guijarro-Real, Carla | es_ES |
dc.contributor.author | Prohens Tomás, Jaime | es_ES |
dc.contributor.author | Rodríguez Burruezo, Adrián | es_ES |
dc.contributor.author | Fita, Ana | es_ES |
dc.date.accessioned | 2021-06-01T03:32:08Z | |
dc.date.available | 2021-06-01T03:32:08Z | |
dc.date.issued | 2020-02 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/167004 | |
dc.description.abstract | [EN] Wall rocket is a wild vegetable with interest to become a crop. However, the information regarding morphological variability in the species is scarce, despite the interest it has received for breeding programs. In addition, evaluating the phytochemical composition can also be useful for developing materials of a high quality. In this study, forty-four populations were evaluated for selected morphoagronomic traits and contents in ascorbic acid (AA), total phenolics (TP), and nitrates (NO3¿). Wall rocket plants had, on average, an intermediate growth habit and a good response to transplant. Moderate variability, mainly for size-related traits, was found, with low to moderate heritability estimates (H2 < 0.35). A Principal Component Analysis revealed that some materials may be selected for differenced traits. On the other hand, wall rocket materials had, on average, high contents in AA (53 mg 100 g¿1) and TP (116 mg CAE 100 g¿1) but also accumulated high levels of NO3¿ (891 mg 100 g¿1). Significant positive correlations were found for AA and TP, which could be exploited for increasing the antioxidant activity and properties of the final product. We provide new information on the variation of wall rocket for traits of morphological and phytochemical interest, which together with other traits, such as the profile of glucosinolates, can be useful for the selection of materials in future breeding programs. | es_ES |
dc.description.sponsorship | C.G. thanks the Ministerio de Educacion, Cultura y Deporte of Spain (MECD) for the financial support by means of a predoctoral FPU grant (FPU14-06798). Authors also thank the "Banco de Germoplasma Vegetal-UPM Cesar Gomez Campo" (Madrid, Spain) for transfer of seeds. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Agronomy | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Antioxidants | es_ES |
dc.subject | Diplotaxis erucoides | es_ES |
dc.subject | Morphology | es_ES |
dc.subject | New crops | es_ES |
dc.subject | Nitrates | es_ES |
dc.subject | Phenotypic variability | es_ES |
dc.subject | Wall rocket | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.title | Morphological diversity and bioactive compounds in wall rocket (Diplotaxis erucoides (L.) DC.) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/agronomy10020306 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU14%2F06798/ES/FPU14%2F06798/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Guijarro-Real, C.; Prohens Tomás, J.; Rodríguez Burruezo, A.; Fita, A. (2020). Morphological diversity and bioactive compounds in wall rocket (Diplotaxis erucoides (L.) DC.). Agronomy. 10(2):1-14. https://doi.org/10.3390/agronomy10020306 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/agronomy10020306 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 2073-4395 | es_ES |
dc.relation.pasarela | S\403686 | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.description.references | Shikov, A. N., Tsitsilin, A. N., Pozharitskaya, O. N., Makarov, V. G., & Heinrich, M. (2017). Traditional and Current Food Use of Wild Plants Listed in the Russian Pharmacopoeia. Frontiers in Pharmacology, 8. doi:10.3389/fphar.2017.00841 | es_ES |
dc.description.references | Shin, T., Fujikawa, K., Moe, A. Z., & Uchiyama, H. (2018). Traditional knowledge of wild edible plants with special emphasis on medicinal uses in Southern Shan State, Myanmar. Journal of Ethnobiology and Ethnomedicine, 14(1). doi:10.1186/s13002-018-0248-1 | es_ES |
dc.description.references | Łuczaj, Ł., Pieroni, A., Tardío, J., Pardo-de-Santayana, M., Sõukand, R., Svanberg, I., & Kalle, R. (2012). Wild food plant use in 21st century Europe: the disappearance of old traditions and the search for new cuisines involving wild edibles. Acta Societatis Botanicorum Poloniae, 81(4), 359-370. doi:10.5586/asbp.2012.031 | es_ES |
dc.description.references | Pinela, J., Carvalho, A. M., & Ferreira, I. C. F. R. (2017). Wild edible plants: Nutritional and toxicological characteristics, retrieval strategies and importance for today’s society. Food and Chemical Toxicology, 110, 165-188. doi:10.1016/j.fct.2017.10.020 | es_ES |
dc.description.references | Licata, M., Tuttolomondo, T., Leto, C., Virga, G., Bonsangue, G., Cammalleri, I., … La Bella, S. (2016). A survey of wild plant species for food use in Sicily (Italy) – results of a 3-year study in four Regional Parks. Journal of Ethnobiology and Ethnomedicine, 12(1). doi:10.1186/s13002-015-0074-7 | es_ES |
dc.description.references | Guarrera, P. M., & Savo, V. (2016). Wild food plants used in traditional vegetable mixtures in Italy. Journal of Ethnopharmacology, 185, 202-234. doi:10.1016/j.jep.2016.02.050 | es_ES |
dc.description.references | Spadafora, N. D., Amaro, A. L., Pereira, M. J., Müller, C. T., Pintado, M., & Rogers, H. J. (2016). Multi-trait analysis of post-harvest storage in rocket salad (Diplotaxis tenuifolia) links sensorial, volatile and nutritional data. Food Chemistry, 211, 114-123. doi:10.1016/j.foodchem.2016.04.107 | es_ES |
dc.description.references | Egea-Gilabert, C., Fernández, J. A., Migliaro, D., Martínez-Sánchez, J. J., & Vicente, M. J. (2009). Genetic variability in wild vs. cultivated Eruca vesicaria populations as assessed by morphological, agronomical and molecular analyses. Scientia Horticulturae, 121(3), 260-266. doi:10.1016/j.scienta.2009.02.020 | es_ES |
dc.description.references | Disciglio, G., Tarantino, A., Frabboni, L., Gagliardi, A., Giuliani, M. M., Tarantino, E., & Gatta, G. (2017). Qualitative characterization of cultivated and wild edible plants: mineral elements, phenols content and antioxidant capacity. Italian Journal of Agronomy, 11. doi:10.4081/ija.2017.1036 | es_ES |
dc.description.references | Schiattone, M. I., Viggiani, R., Di Venere, D., Sergio, L., Cantore, V., Todorovic, M., … Candido, V. (2018). Impact of irrigation regime and nitrogen rate on yield, quality and water use efficiency of wild rocket under greenhouse conditions. Scientia Horticulturae, 229, 182-192. doi:10.1016/j.scienta.2017.10.036 | es_ES |
dc.description.references | Bondonno, C. P., Blekkenhorst, L. C., Liu, A. H., Bondonno, N. P., Ward, N. C., Croft, K. D., & Hodgson, J. M. (2018). Vegetable-derived bioactive nitrate and cardiovascular health. Molecular Aspects of Medicine, 61, 83-91. doi:10.1016/j.mam.2017.08.001 | es_ES |
dc.description.references | Lundberg, J. O., Carlström, M., & Weitzberg, E. (2018). Metabolic Effects of Dietary Nitrate in Health and Disease. Cell Metabolism, 28(1), 9-22. doi:10.1016/j.cmet.2018.06.007 | es_ES |
dc.description.references | Herraiz, F. J., Vilanova, S., Andújar, I., Torrent, D., Plazas, M., Gramazio, P., & Prohens, J. (2015). Morphological and molecular characterization of local varieties, modern cultivars and wild relatives of an emerging vegetable crop, the pepino (Solanum muricatum), provides insight into its diversity, relationships and breeding history. Euphytica, 206(2), 301-318. doi:10.1007/s10681-015-1454-8 | es_ES |
dc.description.references | BGV-UPM. Coleccioneshttp://www.bancodegermoplasma.upm.es/colecciones.html. | es_ES |
dc.description.references | Taranto, F., Francese, G., Di Dato, F., D’Alessandro, A., Greco, B., Onofaro Sanajà, V., … Tripodi, P. (2016). Leaf Metabolic, Genetic, and Morphophysiological Profiles of Cultivated and Wild Rocket Salad (Eruca and Diplotaxis Spp.). Journal of Agricultural and Food Chemistry, 64(29), 5824-5836. doi:10.1021/acs.jafc.6b01737 | es_ES |
dc.description.references | Bell, L., Methven, L., Signore, A., Oruna-Concha, M. J., & Wagstaff, C. (2017). Analysis of seven salad rocket (Eruca sativa) accessions: The relationships between sensory attributes and volatile and non-volatile compounds. Food Chemistry, 218, 181-191. doi:10.1016/j.foodchem.2016.09.076 | es_ES |
dc.description.references | Herraiz, F. J., Vilanova, S., Plazas, M., Gramazio, P., Andújar, I., Rodríguez-Burruezo, A., … Prohens, J. (2015). Phenological growth stages of pepino (Solanum muricatum) according to the BBCH scale. Scientia Horticulturae, 183, 1-7. doi:10.1016/j.scienta.2014.12.008 | es_ES |
dc.description.references | Guijarro-Real, C., Adalid-Martínez, A. M., Gregori-Montaner, A., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2020). Factors affecting germination of Diplotaxis erucoides and their effect on selected quality properties of the germinated products. Scientia Horticulturae, 261, 109013. doi:10.1016/j.scienta.2019.109013 | es_ES |
dc.description.references | Rodríguez, G. R., Moyseenko, J. B., Robbins, M. D., Huarachi Morejón, N., Francis, D. M., & van der Knaap, E. (2010). Tomato Analyzer: A Useful Software Application to Collect Accurate and Detailed Morphological and Colorimetric Data from Two-dimensional Objects. Journal of Visualized Experiments, (37). doi:10.3791/1856 | es_ES |
dc.description.references | Guijarro-Real, C., Prohens, J., Rodriguez-Burruezo, A., Adalid-Martínez, A. M., López-Gresa, M. P., & Fita, A. (2019). Wild edible fool’s watercress, a potential crop with high nutraceutical properties. PeerJ, 7, e6296. doi:10.7717/peerj.6296 | es_ES |
dc.description.references | Egea-Gilabert, C., Ruiz-Hernández, M. V., Parra, M. Á., & Fernández, J. A. (2014). Characterization of purslane (Portulaca oleracea L.) accessions: Suitability as ready-to-eat product. Scientia Horticulturae, 172, 73-81. doi:10.1016/j.scienta.2014.03.051 | es_ES |
dc.description.references | Rodríguez-Burruezo, A., Prohens, J., & Nuez, F. (2002). Genetic Analysis of Quantitative Traits in Pepino (Solanum muricatum) in Two Growing Seasons. Journal of the American Society for Horticultural Science, 127(2), 271-278. doi:10.21273/jashs.127.2.271 | es_ES |
dc.description.references | Metsalu, T., & Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(W1), W566-W570. doi:10.1093/nar/gkv468 | es_ES |
dc.description.references | Prohens, J., Gramazio, P., Plazas, M., Dempewolf, H., Kilian, B., Díez, M. J., … Vilanova, S. (2017). Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica, 213(7). doi:10.1007/s10681-017-1938-9 | es_ES |
dc.description.references | Mousavizadeh, S. J., Hassandokht, M. R., & Kashi, A. (2015). Multivariate analysis of edible Asparagus species in Iran by morphological characters. Euphytica, 206(2), 445-457. doi:10.1007/s10681-015-1508-y | es_ES |
dc.description.references | D’Antuono, L. F., Elementi, S., & Neri, R. (2008). Glucosinolates in Diplotaxis and Eruca leaves: Diversity, taxonomic relations and applied aspects. Phytochemistry, 69(1), 187-199. doi:10.1016/j.phytochem.2007.06.019 | es_ES |
dc.description.references | Di Gioia, F., Avato, P., Serio, F., & Argentieri, M. P. (2018). Glucosinolate profile of Eruca sativa, Diplotaxis tenuifolia and Diplotaxis erucoides grown in soil and soilless systems. Journal of Food Composition and Analysis, 69, 197-204. doi:10.1016/j.jfca.2018.01.022 | es_ES |
dc.description.references | Colonna, E., Rouphael, Y., Barbieri, G., & De Pascale, S. (2016). Nutritional quality of ten leafy vegetables harvested at two light intensities. Food Chemistry, 199, 702-710. doi:10.1016/j.foodchem.2015.12.068 | es_ES |
dc.description.references | Salvatore, S., Pellegrini, N., Brenna, O. V., Del Rio, D., Frasca, G., Brighenti, F., & Tumino, R. (2005). Antioxidant Characterization of Some Sicilian Edible Wild Greens. Journal of Agricultural and Food Chemistry, 53(24), 9465-9471. doi:10.1021/jf051806r | es_ES |
dc.description.references | Bennett, R. N., Rosa, E. A. S., Mellon, F. A., & Kroon, P. A. (2006). Ontogenic Profiling of Glucosinolates, Flavonoids, and Other Secondary Metabolites in Eruca sativa (Salad Rocket), Diplotaxis erucoides (Wall Rocket), Diplotaxis tenuifolia (Wild Rocket), and Bunias orientalis (Turkish Rocket). Journal of Agricultural and Food Chemistry, 54(11), 4005-4015. doi:10.1021/jf052756t | es_ES |
dc.description.references | Francisco, M., Velasco, P., Moreno, D. A., García-Viguera, C., & Cartea, M. E. (2010). Cooking methods of Brassica rapa affect the preservation of glucosinolates, phenolics and vitamin C. Food Research International, 43(5), 1455-1463. doi:10.1016/j.foodres.2010.04.024 | es_ES |
dc.description.references | Bell, L., Oloyede, O. O., Lignou, S., Wagstaff, C., & Methven, L. (2018). Taste and Flavor Perceptions of Glucosinolates, Isothiocyanates, and Related Compounds. Molecular Nutrition & Food Research, 62(18), 1700990. doi:10.1002/mnfr.201700990 | es_ES |
dc.description.references | Bianco, V. V., Santamaria, P., & Elia, A. (1998). NUTRITIONAL VALUE AND NITRATE CONTENT IN EDIBLE WILD SPECIES USED IN SOUTHERN ITALY. Acta Horticulturae, (467), 71-90. doi:10.17660/actahortic.1998.467.7 | es_ES |
dc.description.references | Tang, L., Luo, W., Tian, S., He, Z., Stoffella, P. J., & Yang, X. (2016). Genotypic differences in cadmium and nitrate co-accumulation among the Chinese cabbage genotypes under field conditions. Scientia Horticulturae, 201, 92-100. doi:10.1016/j.scienta.2016.01.040 | es_ES |
dc.description.references | Bahadoran, Z., Mirmiran, P., Jeddi, S., Azizi, F., Ghasemi, A., & Hadaegh, F. (2016). Nitrate and nitrite content of vegetables, fruits, grains, legumes, dairy products, meats and processed meats. Journal of Food Composition and Analysis, 51, 93-105. doi:10.1016/j.jfca.2016.06.006 | es_ES |
dc.subject.ods | 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible | es_ES |