- -

Synthesis of the Inverse Kinematic Model of Non-Redundant Open-Chain Robotic Systems Using Groebner Basis Theory

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis of the Inverse Kinematic Model of Non-Redundant Open-Chain Robotic Systems Using Groebner Basis Theory

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Guzmán-Giménez, José es_ES
dc.contributor.author Valera Fernández, Ángel es_ES
dc.contributor.author Mata Amela, Vicente es_ES
dc.contributor.author Díaz-Rodríguez, Miguel Ángel es_ES
dc.date.accessioned 2021-06-03T03:31:21Z
dc.date.available 2021-06-03T03:31:21Z
dc.date.issued 2020-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167194
dc.description.abstract [EN] One of the most important elements of a robot's control system is its Inverse Kinematic Model (IKM), which calculates the position and velocity references required by the robot's actuators to follow a trajectory. The methods that are commonly used to synthesize the IKM of open-chain robotic systems strongly depend on the geometry of the analyzed robot. Those methods are not systematic procedures that could be applied equally in all possible cases. This project presents the development of a systematic procedure to synthesize the IKM of non-redundant open-chain robotic systems using Groebner Basis theory, which does not depend on the geometry of the robot's structure. The inputs to the developed procedure are the robot's Denavit-Hartenberg parameters, while the output is the IKM, ready to be used in the robot's control system or in a simulation of its behavior. The Groebner Basis calculation is done in a two-step process, first computing a basis with Faugere's F4 algorithm and a grevlex monomial order, and later changing the basis with the FGLM algorithm to the desired lexicographic order. This procedure's performance was proved calculating the IKM of a PUMA manipulator and a walking hexapod robot. The errors in the computed references of both IKMs were absolutely negligible in their corresponding workspaces, and their computation times were comparable to those required by the kinematic models calculated by traditional methods. The developed procedure can be applied to all Cartesian robotic systems, SCARA robots, all the non-redundant robotic manipulators that satisfy the in-line wrist condition, and any non-redundant open-chain robot whose IKM should only solve the positioning problem, such as multi-legged walking robots. es_ES
dc.description.sponsorship This research was partially funded by Plan Nacional de I+D+i, Agencia Estatal de Investigacion del Ministerio de Economia, Industria y Competitividad del Gobierno de Espana, in the project FEDER-CICYT DPI2017-84201-R. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Kinematic Problem es_ES
dc.subject Inverse Kinematic Model (IKM) es_ES
dc.subject Gröbner basis es_ES
dc.subject Non-redundant open-chain robotic systems es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Synthesis of the Inverse Kinematic Model of Non-Redundant Open-Chain Robotic Systems Using Groebner Basis Theory es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app10082781 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-84201-R/ES/INTEGRACION DE MODELOS BIOMECANICOS EN EL DESARROLLO Y OPERACION DE ROBOTS REHABILITADORES RECONFIGURABLES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Guzmán-Giménez, J.; Valera Fernández, Á.; Mata Amela, V.; Díaz-Rodríguez, MÁ. (2020). Synthesis of the Inverse Kinematic Model of Non-Redundant Open-Chain Robotic Systems Using Groebner Basis Theory. Applied Sciences. 10(8):1-22. https://doi.org/10.3390/app10082781 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app10082781 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 22 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 8 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\414650 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Comisión Interministerial de Ciencia y Tecnología es_ES
dc.description.references Atique, M. M. U., Sarker, M. R. I., & Ahad, M. A. R. (2018). Development of an 8DOF quadruped robot and implementation of Inverse Kinematics using Denavit-Hartenberg convention. Heliyon, 4(12), e01053. doi:10.1016/j.heliyon.2018.e01053 es_ES
dc.description.references Flanders, M., & Kavanagh, R. C. (2015). Build-A-Robot: Using virtual reality to visualize the Denavit-Hartenberg parameters. Computer Applications in Engineering Education, 23(6), 846-853. doi:10.1002/cae.21656 es_ES
dc.description.references Özgür, E., & Mezouar, Y. (2016). Kinematic modeling and control of a robot arm using unit dual quaternions. Robotics and Autonomous Systems, 77, 66-73. doi:10.1016/j.robot.2015.12.005 es_ES
dc.description.references Wang, X., Han, D., Yu, C., & Zheng, Z. (2012). The geometric structure of unit dual quaternion with application in kinematic control. Journal of Mathematical Analysis and Applications, 389(2), 1352-1364. doi:10.1016/j.jmaa.2012.01.016 es_ES
dc.description.references Barrientos, A., Álvarez, M., Hernández, J. D., del Cerro, J., & Rossi, C. (2012). Modelado de Caden as Cinemáticas mediante Matrices de Desplazamiento. Una alternativa al método de Denavit-Hartenberg. Revista Iberoamericana de Automática e Informática Industrial RIAI, 9(4), 371-382. doi:10.1016/j.riai.2012.09.004 es_ES
dc.description.references Virgil Petrescu, R. V., Aversa, R., Apicella, A., Mirsayar, M., Kozaitis, S., Abu-Lebdeh, T., & Tiberiu Petrescu, F. I. (2017). Geometry and Inverse Kinematic at the MP3R Mobile Systems. Journal of Mechatronics and Robotics, 1(2), 58-65. doi:10.3844/jmrsp.2017.58.65 es_ES
dc.description.references Chen, S., Luo, M., Abdelaziz, O., & Jiang, G. (2017). A general analytical algorithm for collaborative robot (cobot) with 6 degree of freedom (DOF). 2017 International Conference on Applied System Innovation (ICASI). doi:10.1109/icasi.2017.7988522 es_ES
dc.description.references Bouzgou, K., & Ahmed-Foitih, Z. (2014). Geometric modeling and singularity of 6 DOF Fanuc 200IC robot. Fourth edition of the International Conference on the Innovative Computing Technology (INTECH 2014). doi:10.1109/intech.2014.6927745 es_ES
dc.description.references Mahajan, A., Singh, H. P., & Sukavanam, N. (2017). An unsupervised learning based neural network approach for a robotic manipulator. International Journal of Information Technology, 9(1), 1-6. doi:10.1007/s41870-017-0002-2 es_ES
dc.description.references Duka, A.-V. (2014). Neural Network based Inverse Kinematics Solution for Trajectory Tracking of a Robotic Arm. Procedia Technology, 12, 20-27. doi:10.1016/j.protcy.2013.12.451 es_ES
dc.description.references Toshani, H., & Farrokhi, M. (2014). Real-time inverse kinematics of redundant manipulators using neural networks and quadratic programming: A Lyapunov-based approach. Robotics and Autonomous Systems, 62(6), 766-781. doi:10.1016/j.robot.2014.02.005 es_ES
dc.description.references Rokbani, N., & Alimi, A. M. (2013). Inverse Kinematics Using Particle Swarm Optimization, A Statistical Analysis. Procedia Engineering, 64, 1602-1611. doi:10.1016/j.proeng.2013.09.242 es_ES
dc.description.references Jiang, G., Luo, M., Bai, K., & Chen, S. (2017). A Precise Positioning Method for a Puncture Robot Based on a PSO-Optimized BP Neural Network Algorithm. Applied Sciences, 7(10), 969. doi:10.3390/app7100969 es_ES
dc.description.references Köker, R. (2013). A genetic algorithm approach to a neural-network-based inverse kinematics solution of robotic manipulators based on error minimization. Information Sciences, 222, 528-543. doi:10.1016/j.ins.2012.07.051 es_ES
dc.description.references Rokbani, N., Casals, A., & Alimi, A. M. (2014). IK-FA, a New Heuristic Inverse Kinematics Solver Using Firefly Algorithm. Computational Intelligence Applications in Modeling and Control, 369-395. doi:10.1007/978-3-319-11017-2_15 es_ES
dc.description.references Buchberger, B. (2001). Multidimensional Systems and Signal Processing, 12(3/4), 223-251. doi:10.1023/a:1011949421611 es_ES
dc.description.references Kendricks, K. D. (2013). A kinematic analysis of the gmf a-510 robot: An introduction and application of groebner basis theory. Journal of Interdisciplinary Mathematics, 16(2-03), 147-169. doi:10.1080/09720502.2013.800304 es_ES
dc.description.references Wang, Y., Hang, L., & Yang, T. (2006). Inverse Kinematics Analysis of General 6R Serial Robot Mechanism Based on Groebner Base. Frontiers of Mechanical Engineering in China, 1(1), 115-124. doi:10.1007/s11465-005-0022-7 es_ES
dc.description.references Abbasnejad, G., & Carricato, M. (2015). Direct Geometrico-static Problem of Underconstrained Cable-Driven Parallel Robots With <inline-formula> <tex-math notation=«LaTeX»>$n$</tex-math></inline-formula> Cables. IEEE Transactions on Robotics, 31(2), 468-478. doi:10.1109/tro.2015.2393173 es_ES
dc.description.references Rameau, J.-F., & Serré, P. (2015). Computing mobility condition using Groebner basis. Mechanism and Machine Theory, 91, 21-38. doi:10.1016/j.mechmachtheory.2015.04.003 es_ES
dc.description.references Xiguang Huang, & Guangpin He. (2009). Forward kinematics of the general Stewart-Gough platform using Gr&#x00F6;bner basis. 2009 International Conference on Mechatronics and Automation. doi:10.1109/icma.2009.5246088 es_ES
dc.description.references Uchida, T., & McPhee, J. (2012). Using Gröbner bases to generate efficient kinematic solutions for the dynamic simulation of multi-loop mechanisms. Mechanism and Machine Theory, 52, 144-157. doi:10.1016/j.mechmachtheory.2012.01.015 es_ES
dc.description.references Faugère, J.-C. (2010). FGb: A Library for Computing Gröbner Bases. Lecture Notes in Computer Science, 84-87. doi:10.1007/978-3-642-15582-6_17 es_ES
dc.description.references Faugére, J.-C. (1999). A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure and Applied Algebra, 139(1-3), 61-88. doi:10.1016/s0022-4049(99)00005-5 es_ES
dc.description.references Faugère, J. C., Gianni, P., Lazard, D., & Mora, T. (1993). Efficient Computation of Zero-dimensional Gröbner Bases by Change of Ordering. Journal of Symbolic Computation, 16(4), 329-344. doi:10.1006/jsco.1993.1051 es_ES
dc.description.references Salzer, H. E. (1960). A note on the solution of quartic equations. Mathematics of Computation, 14(71), 279-279. doi:10.1090/s0025-5718-1960-0117882-6 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem