Mostrar el registro sencillo del ítem
dc.contributor.author | Guzmán-Giménez, José | es_ES |
dc.contributor.author | Valera Fernández, Ángel | es_ES |
dc.contributor.author | Mata Amela, Vicente | es_ES |
dc.contributor.author | Díaz-Rodríguez, Miguel Ángel | es_ES |
dc.date.accessioned | 2021-06-03T03:31:21Z | |
dc.date.available | 2021-06-03T03:31:21Z | |
dc.date.issued | 2020-02 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/167194 | |
dc.description.abstract | [EN] One of the most important elements of a robot's control system is its Inverse Kinematic Model (IKM), which calculates the position and velocity references required by the robot's actuators to follow a trajectory. The methods that are commonly used to synthesize the IKM of open-chain robotic systems strongly depend on the geometry of the analyzed robot. Those methods are not systematic procedures that could be applied equally in all possible cases. This project presents the development of a systematic procedure to synthesize the IKM of non-redundant open-chain robotic systems using Groebner Basis theory, which does not depend on the geometry of the robot's structure. The inputs to the developed procedure are the robot's Denavit-Hartenberg parameters, while the output is the IKM, ready to be used in the robot's control system or in a simulation of its behavior. The Groebner Basis calculation is done in a two-step process, first computing a basis with Faugere's F4 algorithm and a grevlex monomial order, and later changing the basis with the FGLM algorithm to the desired lexicographic order. This procedure's performance was proved calculating the IKM of a PUMA manipulator and a walking hexapod robot. The errors in the computed references of both IKMs were absolutely negligible in their corresponding workspaces, and their computation times were comparable to those required by the kinematic models calculated by traditional methods. The developed procedure can be applied to all Cartesian robotic systems, SCARA robots, all the non-redundant robotic manipulators that satisfy the in-line wrist condition, and any non-redundant open-chain robot whose IKM should only solve the positioning problem, such as multi-legged walking robots. | es_ES |
dc.description.sponsorship | This research was partially funded by Plan Nacional de I+D+i, Agencia Estatal de Investigacion del Ministerio de Economia, Industria y Competitividad del Gobierno de Espana, in the project FEDER-CICYT DPI2017-84201-R. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Applied Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Kinematic Problem | es_ES |
dc.subject | Inverse Kinematic Model (IKM) | es_ES |
dc.subject | Gröbner basis | es_ES |
dc.subject | Non-redundant open-chain robotic systems | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.title | Synthesis of the Inverse Kinematic Model of Non-Redundant Open-Chain Robotic Systems Using Groebner Basis Theory | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/app10082781 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-84201-R/ES/INTEGRACION DE MODELOS BIOMECANICOS EN EL DESARROLLO Y OPERACION DE ROBOTS REHABILITADORES RECONFIGURABLES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.description.bibliographicCitation | Guzmán-Giménez, J.; Valera Fernández, Á.; Mata Amela, V.; Díaz-Rodríguez, MÁ. (2020). Synthesis of the Inverse Kinematic Model of Non-Redundant Open-Chain Robotic Systems Using Groebner Basis Theory. Applied Sciences. 10(8):1-22. https://doi.org/10.3390/app10082781 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/app10082781 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 22 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 8 | es_ES |
dc.identifier.eissn | 2076-3417 | es_ES |
dc.relation.pasarela | S\414650 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Comisión Interministerial de Ciencia y Tecnología | es_ES |
dc.description.references | Atique, M. M. U., Sarker, M. R. I., & Ahad, M. A. R. (2018). Development of an 8DOF quadruped robot and implementation of Inverse Kinematics using Denavit-Hartenberg convention. Heliyon, 4(12), e01053. doi:10.1016/j.heliyon.2018.e01053 | es_ES |
dc.description.references | Flanders, M., & Kavanagh, R. C. (2015). Build-A-Robot: Using virtual reality to visualize the Denavit-Hartenberg parameters. Computer Applications in Engineering Education, 23(6), 846-853. doi:10.1002/cae.21656 | es_ES |
dc.description.references | Özgür, E., & Mezouar, Y. (2016). Kinematic modeling and control of a robot arm using unit dual quaternions. Robotics and Autonomous Systems, 77, 66-73. doi:10.1016/j.robot.2015.12.005 | es_ES |
dc.description.references | Wang, X., Han, D., Yu, C., & Zheng, Z. (2012). The geometric structure of unit dual quaternion with application in kinematic control. Journal of Mathematical Analysis and Applications, 389(2), 1352-1364. doi:10.1016/j.jmaa.2012.01.016 | es_ES |
dc.description.references | Barrientos, A., Álvarez, M., Hernández, J. D., del Cerro, J., & Rossi, C. (2012). Modelado de Caden as Cinemáticas mediante Matrices de Desplazamiento. Una alternativa al método de Denavit-Hartenberg. Revista Iberoamericana de Automática e Informática Industrial RIAI, 9(4), 371-382. doi:10.1016/j.riai.2012.09.004 | es_ES |
dc.description.references | Virgil Petrescu, R. V., Aversa, R., Apicella, A., Mirsayar, M., Kozaitis, S., Abu-Lebdeh, T., & Tiberiu Petrescu, F. I. (2017). Geometry and Inverse Kinematic at the MP3R Mobile Systems. Journal of Mechatronics and Robotics, 1(2), 58-65. doi:10.3844/jmrsp.2017.58.65 | es_ES |
dc.description.references | Chen, S., Luo, M., Abdelaziz, O., & Jiang, G. (2017). A general analytical algorithm for collaborative robot (cobot) with 6 degree of freedom (DOF). 2017 International Conference on Applied System Innovation (ICASI). doi:10.1109/icasi.2017.7988522 | es_ES |
dc.description.references | Bouzgou, K., & Ahmed-Foitih, Z. (2014). Geometric modeling and singularity of 6 DOF Fanuc 200IC robot. Fourth edition of the International Conference on the Innovative Computing Technology (INTECH 2014). doi:10.1109/intech.2014.6927745 | es_ES |
dc.description.references | Mahajan, A., Singh, H. P., & Sukavanam, N. (2017). An unsupervised learning based neural network approach for a robotic manipulator. International Journal of Information Technology, 9(1), 1-6. doi:10.1007/s41870-017-0002-2 | es_ES |
dc.description.references | Duka, A.-V. (2014). Neural Network based Inverse Kinematics Solution for Trajectory Tracking of a Robotic Arm. Procedia Technology, 12, 20-27. doi:10.1016/j.protcy.2013.12.451 | es_ES |
dc.description.references | Toshani, H., & Farrokhi, M. (2014). Real-time inverse kinematics of redundant manipulators using neural networks and quadratic programming: A Lyapunov-based approach. Robotics and Autonomous Systems, 62(6), 766-781. doi:10.1016/j.robot.2014.02.005 | es_ES |
dc.description.references | Rokbani, N., & Alimi, A. M. (2013). Inverse Kinematics Using Particle Swarm Optimization, A Statistical Analysis. Procedia Engineering, 64, 1602-1611. doi:10.1016/j.proeng.2013.09.242 | es_ES |
dc.description.references | Jiang, G., Luo, M., Bai, K., & Chen, S. (2017). A Precise Positioning Method for a Puncture Robot Based on a PSO-Optimized BP Neural Network Algorithm. Applied Sciences, 7(10), 969. doi:10.3390/app7100969 | es_ES |
dc.description.references | Köker, R. (2013). A genetic algorithm approach to a neural-network-based inverse kinematics solution of robotic manipulators based on error minimization. Information Sciences, 222, 528-543. doi:10.1016/j.ins.2012.07.051 | es_ES |
dc.description.references | Rokbani, N., Casals, A., & Alimi, A. M. (2014). IK-FA, a New Heuristic Inverse Kinematics Solver Using Firefly Algorithm. Computational Intelligence Applications in Modeling and Control, 369-395. doi:10.1007/978-3-319-11017-2_15 | es_ES |
dc.description.references | Buchberger, B. (2001). Multidimensional Systems and Signal Processing, 12(3/4), 223-251. doi:10.1023/a:1011949421611 | es_ES |
dc.description.references | Kendricks, K. D. (2013). A kinematic analysis of the gmf a-510 robot: An introduction and application of groebner basis theory. Journal of Interdisciplinary Mathematics, 16(2-03), 147-169. doi:10.1080/09720502.2013.800304 | es_ES |
dc.description.references | Wang, Y., Hang, L., & Yang, T. (2006). Inverse Kinematics Analysis of General 6R Serial Robot Mechanism Based on Groebner Base. Frontiers of Mechanical Engineering in China, 1(1), 115-124. doi:10.1007/s11465-005-0022-7 | es_ES |
dc.description.references | Abbasnejad, G., & Carricato, M. (2015). Direct Geometrico-static Problem of Underconstrained Cable-Driven Parallel Robots With <inline-formula> <tex-math notation=«LaTeX»>$n$</tex-math></inline-formula> Cables. IEEE Transactions on Robotics, 31(2), 468-478. doi:10.1109/tro.2015.2393173 | es_ES |
dc.description.references | Rameau, J.-F., & Serré, P. (2015). Computing mobility condition using Groebner basis. Mechanism and Machine Theory, 91, 21-38. doi:10.1016/j.mechmachtheory.2015.04.003 | es_ES |
dc.description.references | Xiguang Huang, & Guangpin He. (2009). Forward kinematics of the general Stewart-Gough platform using Gröbner basis. 2009 International Conference on Mechatronics and Automation. doi:10.1109/icma.2009.5246088 | es_ES |
dc.description.references | Uchida, T., & McPhee, J. (2012). Using Gröbner bases to generate efficient kinematic solutions for the dynamic simulation of multi-loop mechanisms. Mechanism and Machine Theory, 52, 144-157. doi:10.1016/j.mechmachtheory.2012.01.015 | es_ES |
dc.description.references | Faugère, J.-C. (2010). FGb: A Library for Computing Gröbner Bases. Lecture Notes in Computer Science, 84-87. doi:10.1007/978-3-642-15582-6_17 | es_ES |
dc.description.references | Faugére, J.-C. (1999). A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure and Applied Algebra, 139(1-3), 61-88. doi:10.1016/s0022-4049(99)00005-5 | es_ES |
dc.description.references | Faugère, J. C., Gianni, P., Lazard, D., & Mora, T. (1993). Efficient Computation of Zero-dimensional Gröbner Bases by Change of Ordering. Journal of Symbolic Computation, 16(4), 329-344. doi:10.1006/jsco.1993.1051 | es_ES |
dc.description.references | Salzer, H. E. (1960). A note on the solution of quartic equations. Mathematics of Computation, 14(71), 279-279. doi:10.1090/s0025-5718-1960-0117882-6 | es_ES |