Mostrar el registro sencillo del ítem
dc.contributor.author | Guardiola, Carlos | es_ES |
dc.contributor.author | Pla Moreno, Benjamín | es_ES |
dc.contributor.author | Bares-Moreno, Pau | es_ES |
dc.contributor.author | Mora, Javier | es_ES |
dc.date.accessioned | 2021-06-03T03:32:04Z | |
dc.date.available | 2021-06-03T03:32:04Z | |
dc.date.issued | 2020-10 | es_ES |
dc.identifier.issn | 1468-0874 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/167204 | |
dc.description.abstract | [EN] Current diesel engine regulations include on-board diagnostic requirements so that after-treatment systems need on-board methods to detect their aging state through the available measurements. In a state-of-the-art diesel exhaust line, two temperature and lambda measurements can be found upstream and downstream of the diesel oxidation catalyst. Thus, the strategy presented in this article makes use of these measurements to estimate the light-off temperature, which has been widely studied as a characteristic of diesel oxidation catalyst aging. The light-off temperature estimation potential is evaluated first under dynamic engine operating conditions, in which lambda measurements are proved to be precise enough to detect oxidation. However, dynamic conditions make the association of a representative temperature with an oxidation event difficult. Therefore, the method makes use of more controlled conditions at idle, during which the exhaust temperature decreases avoiding dynamics of normal driving conditions. During the idle, post-injection pulses are applied to determine whether oxidation occurs at a representative temperature measured by the upstream temperature sensor. The result of each pulse is used to generate a database. Then, after a long enough time window, the database generated will allow characterizing non-oxidation and oxidation temperatures, with an intermediate interval of indefinition. This article shows how the temperatures of these ranges increase as the light-off temperature increases, thereby validating the proposed method for light-off temperature estimation. | es_ES |
dc.description.sponsorship | The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The authors acknowledge the support of Spanish Ministerio de Econom¿¿a, Industria y Competitividad through project TRA2016-78717-R. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications | es_ES |
dc.relation.ispartof | International Journal of Engine Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Diesel oxidation catalyst diagnosis | es_ES |
dc.subject | Catalyst aging | es_ES |
dc.subject | Light-off temperature | es_ES |
dc.subject | Aging estimation | es_ES |
dc.subject | Diesel engine emissions | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | An on-board method to estimate the light-off temperature of diesel oxidation catalysts | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/1468087418817965 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TRA2016-78717-R/ES/ESTRATEGIAS DE CONTROL BASADAS EN LA INFORMACION CONTEXTUAL DEL VEHICULO PARA LA REDUCCION DEL CONSUMO DE COMBUSTIBLE Y LAS EMISIONES EN CONDICIONES REALES DE CONDUCCION/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Guardiola, C.; Pla Moreno, B.; Bares-Moreno, P.; Mora, J. (2020). An on-board method to estimate the light-off temperature of diesel oxidation catalysts. International Journal of Engine Research. 21(8):1480-1492. https://doi.org/10.1177/1468087418817965 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1177/1468087418817965 | es_ES |
dc.description.upvformatpinicio | 1480 | es_ES |
dc.description.upvformatpfin | 1492 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 8 | es_ES |
dc.relation.pasarela | S\417669 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Guardiola, C., Pla, B., Piqueras, P., Mora, J., & Lefebvre, D. (2017). Model-based passive and active diagnostics strategies for diesel oxidation catalysts. Applied Thermal Engineering, 110, 962-971. doi:10.1016/j.applthermaleng.2016.08.207 | es_ES |
dc.description.references | Blanco-Rodriguez, D., Vagnoni, G., & Holderbaum, B. (2016). EU6 C-Segment Diesel vehicles, a challenging segment to meet RDE and WLTP requirements. IFAC-PapersOnLine, 49(11), 649-656. doi:10.1016/j.ifacol.2016.08.094 | es_ES |
dc.description.references | Ye, S., Yap, Y. H., Kolaczkowski, S. T., Robinson, K., & Lukyanov, D. (2012). Catalyst ‘light-off’ experiments on a diesel oxidation catalyst connected to a diesel engine—Methodology and techniques. Chemical Engineering Research and Design, 90(6), 834-845. doi:10.1016/j.cherd.2011.10.003 | es_ES |
dc.description.references | Li, J., Szailer, T., Watts, A., Currier, N., & Yezerets, A. (2012). Investigation of the Impact of Real-World Aging on Diesel Oxidation Catalysts. SAE International Journal of Engines, 5(3), 985-994. doi:10.4271/2012-01-1094 | es_ES |
dc.description.references | Wiebenga, M. H., Kim, C. H., Schmieg, S. J., Oh, S. H., Brown, D. B., Kim, D. H., … Peden, C. H. F. (2012). Deactivation mechanisms of Pt/Pd-based diesel oxidation catalysts. Catalysis Today, 184(1), 197-204. doi:10.1016/j.cattod.2011.11.014 | es_ES |
dc.description.references | Mallamo, F., Longhi, S., Millo, F., & Rolando, L. (2013). Modeling of diesel oxidation catalysts for calibration and control purpose. International Journal of Engine Research, 15(8), 965-979. doi:10.1177/1468087413492526 | es_ES |
dc.description.references | Mohammadpour, J., Franchek, M., & Grigoriadis, K. (2011). A survey on diagnostic methods for automotive engines. International Journal of Engine Research, 13(1), 41-64. doi:10.1177/1468087411422851 | es_ES |
dc.description.references | Tourlonias, P., & Koltsakis, G. (2011). Model-based comparative study of Euro 6 diesel aftertreatment concepts, focusing on fuel consumption. International Journal of Engine Research, 12(3), 238-251. doi:10.1177/1468087411405104 | es_ES |
dc.description.references | Guardiola, C., Pla, B., Blanco-Rodriguez, D., Mazer, A., & Hayat, O. (2013). A bias correction method for fast fuel-to-air ratio estimation in diesel engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 227(8), 1099-1111. doi:10.1177/0954407012473415 | es_ES |
dc.description.references | Guardiola, C., Dolz, V., Pla, B., & Mora, J. (2016). Fast estimation of diesel oxidation catalysts inlet gas temperature. Control Engineering Practice, 56, 148-156. doi:10.1016/j.conengprac.2016.08.020 | es_ES |