- -

Multivariable controller design for the cooling system of a PEM fuel cell by considering nearly optimal solutions in a multi-objective optimization approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multivariable controller design for the cooling system of a PEM fuel cell by considering nearly optimal solutions in a multi-objective optimization approach

Mostrar el registro completo del ítem

Pajares-Ferrando, A.; Blasco, X.; Herrero Durá, JM.; Simarro Fernández, R. (2020). Multivariable controller design for the cooling system of a PEM fuel cell by considering nearly optimal solutions in a multi-objective optimization approach. Complexity. 2020:1-17. https://doi.org/10.1155/2020/8649428

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167205

Ficheros en el ítem

Metadatos del ítem

Título: Multivariable controller design for the cooling system of a PEM fuel cell by considering nearly optimal solutions in a multi-objective optimization approach
Autor: Pajares-Ferrando, Alberto Blasco, Xavier Herrero Durá, Juan Manuel Simarro Fernández, Raúl
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica
Fecha difusión:
Resumen:
[EN] This paper presents a design for the multivariable control of a cooling system in a PEM (proton exchange membrane) fuel cell stack. This system is complex and challenging enough: interactions between variables, highly ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Complexity. (issn: 1076-2787 )
DOI: 10.1155/2020/8649428
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1155/2020/8649428
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096904-B-I00/ES/HERRAMIENTAS DE OPTIMIZACION MULTIOBJETIVO PARA LA CARACTERIZACION Y ANALISIS DE CONCEPTOS DE DISEÑO Y SOLUCIONES SUB-OPTIMAS EFICIENTES EN PROBLEMAS DE INGENIERIA DE SISTEMAS/
info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F055/
Agradecimientos:
This study was supported in part by the Ministerio de Ciencia, Innovacion y Universidades (Spain) (grant no. RTI2018-096904-B-I00) and by the Generalitat Valenciana regional government through project AICO/2019/055.
Tipo: Artículo

References

Gunantara, N. (2018). A review of multi-objective optimization: Methods and its applications. Cogent Engineering, 5(1), 1502242. doi:10.1080/23311916.2018.1502242

Engau, A., & Wiecek, M. M. (2007). Generating ε-efficient solutions in multiobjective programming. European Journal of Operational Research, 177(3), 1566-1579. doi:10.1016/j.ejor.2005.10.023

Loridan, P. (1984). ?-solutions in vector minimization problems. Journal of Optimization Theory and Applications, 43(2), 265-276. doi:10.1007/bf00936165 [+]
Gunantara, N. (2018). A review of multi-objective optimization: Methods and its applications. Cogent Engineering, 5(1), 1502242. doi:10.1080/23311916.2018.1502242

Engau, A., & Wiecek, M. M. (2007). Generating ε-efficient solutions in multiobjective programming. European Journal of Operational Research, 177(3), 1566-1579. doi:10.1016/j.ejor.2005.10.023

Loridan, P. (1984). ?-solutions in vector minimization problems. Journal of Optimization Theory and Applications, 43(2), 265-276. doi:10.1007/bf00936165

White, D. J. (1986). Epsilon efficiency. Journal of Optimization Theory and Applications, 49(2), 319-337. doi:10.1007/bf00940762

Pajares, A., Blasco, X., Herrero, J. M., & Reynoso-Meza, G. (2018). A Multiobjective Genetic Algorithm for the Localization of Optimal and Nearly Optimal Solutions Which Are Potentially Useful: nevMOGA. Complexity, 2018, 1-22. doi:10.1155/2018/1792420

Schutze, O., Vasile, M., & Coello, C. A. C. (2011). Computing the Set of Epsilon-Efficient Solutions in Multiobjective Space Mission Design. Journal of Aerospace Computing, Information, and Communication, 8(3), 53-70. doi:10.2514/1.46478

Pajares, A., Blasco, X., Herrero, J. M., & Reynoso-Meza, G. (2019). A New Point of View in Multivariable Controller Tuning Under Multiobjective Optimization by Considering Nearly Optimal Solutions. IEEE Access, 7, 66435-66452. doi:10.1109/access.2019.2915556

Fredriksson, A., Forsgren, A., & Hårdemark, B. (2011). Minimax optimization for handling range and setup uncertainties in proton therapy. Medical Physics, 38(3), 1672-1684. doi:10.1118/1.3556559

Lee, J., & Johnson, G. E. (1993). Optimal tolerance allotment using a genetic algorithm and truncated Monte Carlo simulation. Computer-Aided Design, 25(9), 601-611. doi:10.1016/0010-4485(93)90075-y

Andújar, J. M., & Segura, F. (2009). Fuel cells: History and updating. A walk along two centuries. Renewable and Sustainable Energy Reviews, 13(9), 2309-2322. doi:10.1016/j.rser.2009.03.015

Mehta, V., & Cooper, J. S. (2003). Review and analysis of PEM fuel cell design and manufacturing. Journal of Power Sources, 114(1), 32-53. doi:10.1016/s0378-7753(02)00542-6

De las Heras, A., Vivas, F. J., Segura, F., Redondo, M. J., & Andújar, J. M. (2018). Air-cooled fuel cells: Keys to design and build the oxidant/cooling system. Renewable Energy, 125, 1-20. doi:10.1016/j.renene.2018.02.077

Kandlikar, S. G., & Lu, Z. (2009). Thermal management issues in a PEMFC stack – A brief review of current status. Applied Thermal Engineering, 29(7), 1276-1280. doi:10.1016/j.applthermaleng.2008.05.009

Yan, Q., Toghiani, H., & Causey, H. (2006). Steady state and dynamic performance of proton exchange membrane fuel cells (PEMFCs) under various operating conditions and load changes. Journal of Power Sources, 161(1), 492-502. doi:10.1016/j.jpowsour.2006.03.077

Maghanki, M. M., Ghobadian, B., Najafi, G., & Galogah, R. J. (2013). Micro combined heat and power (MCHP) technologies and applications. Renewable and Sustainable Energy Reviews, 28, 510-524. doi:10.1016/j.rser.2013.07.053

Notter, D. A., Kouravelou, K., Karachalios, T., Daletou, M. K., & Haberland, N. T. (2015). Life cycle assessment of PEM FC applications: electric mobility and μ-CHP. Energy & Environmental Science, 8(7), 1969-1985. doi:10.1039/c5ee01082a

Martinez, S., Michaux, G., Salagnac, P., & Bouvier, J.-L. (2017). Micro-combined heat and power systems (micro-CHP) based on renewable energy sources. Energy Conversion and Management, 154, 262-285. doi:10.1016/j.enconman.2017.10.035

Elmer, T., Worall, M., Wu, S., & Riffat, S. B. (2015). Fuel cell technology for domestic built environment applications: State of-the-art review. Renewable and Sustainable Energy Reviews, 42, 913-931. doi:10.1016/j.rser.2014.10.080

Hawkes, A., Staffell, I., Brett, D., & Brandon, N. (2009). Fuel cells for micro-combined heat and power generation. Energy & Environmental Science, 2(7), 729. doi:10.1039/b902222h

Ellamla, H. R., Staffell, I., Bujlo, P., Pollet, B. G., & Pasupathi, S. (2015). Current status of fuel cell based combined heat and power systems for residential sector. Journal of Power Sources, 293, 312-328. doi:10.1016/j.jpowsour.2015.05.050

Strahl, S., & Costa-Castelló, R. (2017). Temperature control of open-cathode PEM fuel cells. IFAC-PapersOnLine, 50(1), 11088-11093. doi:10.1016/j.ifacol.2017.08.2492

Zhang, G., & Kandlikar, S. G. (2012). A critical review of cooling techniques in proton exchange membrane fuel cell stacks. International Journal of Hydrogen Energy, 37(3), 2412-2429. doi:10.1016/j.ijhydene.2011.11.010

Navarro Gimenez, S., Herrero Dura, J. M., Blasco Ferragud, F. X., & Simarro Fernandez, R. (2019). Control-Oriented Modeling of the Cooling Process of a PEMFC-Based $\mu$ -CHP System. IEEE Access, 7, 95620-95642. doi:10.1109/access.2019.2928632

Herrero, J. M., García-Nieto, S., Blasco, X., Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2008). Optimization of sonic crystal attenuation properties by ev-MOGA multiobjective evolutionary algorithm. Structural and Multidisciplinary Optimization, 39(2), 203-215. doi:10.1007/s00158-008-0323-7

Bristol, E. (1966). On a new measure of interaction for multivariable process control. IEEE Transactions on Automatic Control, 11(1), 133-134. doi:10.1109/tac.1966.1098266

Blasco, X., Herrero, J. M., Sanchis, J., & Martínez, M. (2008). A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization. Information Sciences, 178(20), 3908-3924. doi:10.1016/j.ins.2008.06.010

Schmittinger, W., & Vahidi, A. (2008). A review of the main parameters influencing long-term performance and durability of PEM fuel cells. Journal of Power Sources, 180(1), 1-14. doi:10.1016/j.jpowsour.2008.01.070

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem