- -

New Sensor Based on Magnetic Fields for Monitoring the Concentration of Organic Fertilisers in Fertigation Systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

New Sensor Based on Magnetic Fields for Monitoring the Concentration of Organic Fertilisers in Fertigation Systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Basterrechea-Chertudi, Daniel Andoni es_ES
dc.contributor.author Parra-Boronat, Lorena es_ES
dc.contributor.author Botella-Campos, Marta es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.contributor.author Mauri, Pedro V. es_ES
dc.date.accessioned 2021-06-03T03:32:39Z
dc.date.available 2021-06-03T03:32:39Z
dc.date.issued 2020-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167213
dc.description.abstract [EN] In this paper, we test three prototypes with different characteristics for controlling the quantity of organic fertiliser in the agricultural irrigation system. We use 0.4 mm of copper diameter, distributing in different layers, maintaining the relation of 40 spires for powered coil and 80 for the induced coil. Moreover, we develop sensors with 8, 4, and 2 layers of copper. The coils are powered by a sine wave of 3.3 V peak to peak, and the other part is induced. To verify the functioning of this sensor, we perform several simulations with COMSOL Multiphysics to verify the magnetic field created around the powered coil, as well as the electric field, followed by a series of tests, using six samples between the 0 g/L and 20 g/L of organic fertiliser, and measure their conductivity. First, we find the working frequency doing a sweep for each prototype and four configurations. In this case, for all samples, making a sweep between 10 kHz and 300 kHz. We obtained that in prototype 1 (P1) (coil with 8 layers) the working frequency is around 100 kHz, in P2 (coil with 4 layers) around 110 kHz, and for P3 (coil with 2 layers) around 140 kHz. Then, we calibrate the prototypes measuring the six samples at four different configurations for each sensor to evaluate the possible variances. Likewise, the measures were taken in triplicate to reduce the possible errors. The obtained results show that the maximum difference of induced voltage between the lowest and the highest concentration is for the P2/configuration 4 with 1.84 V. Likewise, we have obtained an optimum correlation of 0.997. Then, we use the other three samples to verify the optimum functioning of the obtained calibrates. Moreover, the ANOVA simple procedure is applied to the data of all prototypes, in the working frequency of each configuration, to verify the significant difference between the values. The obtained results indicate that there is a significate difference between the average of concentration (g/L) and the induced voltage, and another with a level of 5% of significance. Finally, we compare all of the tested prototypes and configurations, and have determined that prototype three with configuration 1 is the best device to be used as a fertiliser sensor in water. es_ES
dc.description.sponsorship This work is partially funded by the Conselleria de Educacion, Cultura y Deporte with the Subvenciones para la contratacion de personal investigador en fase postdoctoral, grant number APOSTD/2019/04, by the European Union, through the ERANETMED (Euromediterranean Cooperation through ERANET joint activities and beyond) project ERANETMED3-227 SMARTWATIR, and by the European Union with the "Fondo Europeo Agricola de Desarrollo Rural (FEADER)-Europa invierte en zonas rurales", the MAPAMA, and Comunidad de Madrid with the IMIDRA, under the mark of the PDR-CM 2014-2020" project number PDR18-XEROCESPED. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Inductive coils es_ES
dc.subject Precision agriculture es_ES
dc.subject Organic fertiliser es_ES
dc.subject Inductive sensors es_ES
dc.subject Agricultural monitoring es_ES
dc.subject Irrigation control es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title New Sensor Based on Magnetic Fields for Monitoring the Concentration of Organic Fertilisers in Fertigation Systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app10207222 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/609475/EU/EURO-MEDITERRANEAN Cooperation through ERANET joint activities and beyond/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MAPAMA//PDR18-XEROCESPED/ES/Ensayos de mezclas de cespitosas más sostenibles para jardinería pública/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC//ERANETMED3-227 SMARTWATIR/EU/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F004/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Basterrechea-Chertudi, DA.; Parra-Boronat, L.; Botella-Campos, M.; Lloret, J.; Mauri, PV. (2020). New Sensor Based on Magnetic Fields for Monitoring the Concentration of Organic Fertilisers in Fertigation Systems. Applied Sciences. 10(20):1-28. https://doi.org/10.3390/app10207222 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app10207222 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 28 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 20 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\434042 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Agricultura, Pesca, Alimentación y Medio Ambiente es_ES
dc.description.references World Agriculture 2030: Main Findingshttp://www.fao.org/english/newsroom/news/2002/7833-en.html es_ES
dc.description.references Gamarra, C., Díaz Lezcano, M. I., Vera de Ortíz, M., Galeano, M. D. P., & Cabrera Cardús, A. J. N. (2018). Relación carbono-nitrógeno en suelos de sistemas silvopastoriles del Chaco paraguayo. Revista Mexicana de Ciencias Forestales, 9(46). doi:10.29298/rmcf.v9i46.134 es_ES
dc.description.references Too Much Organic Matterhttps://www.mofga.org/Publications/The-Maine-Organic-Farmer-Gardener/Fall-2009/Organic-Matter es_ES
dc.description.references Nasir Khan, M. (2018). OBSOLETE: Fertilizers and Their Contaminants in Soils, Surface and Groundwater. Reference Module in Earth Systems and Environmental Sciences. doi:10.1016/b978-0-12-409548-9.09888-2 es_ES
dc.description.references Gebbers, R., & Adamchuk, V. I. (2010). Precision Agriculture and Food Security. Science, 327(5967), 828-831. doi:10.1126/science.1183899 es_ES
dc.description.references Feng, C., Lü, S., Gao, C., Wang, X., Xu, X., Bai, X., … Wu, L. (2015). «Smart» Fertilizer with Temperature- and pH-Responsive Behavior via Surface-Initiated Polymerization for Controlled Release of Nutrients. ACS Sustainable Chemistry & Engineering, 3(12), 3157-3166. doi:10.1021/acssuschemeng.5b01384 es_ES
dc.description.references Ni, B., Liu, M., Lü, S., Xie, L., & Wang, Y. (2011). Environmentally Friendly Slow-Release Nitrogen Fertilizer. Journal of Agricultural and Food Chemistry, 59(18), 10169-10175. doi:10.1021/jf202131z es_ES
dc.description.references Souza, C. F., Faez, R., Bacalhau, F. B., Bacarin, M. F., & Pereira, T. S. (2017). IN SITU MONITORING OF A CONTROLLED RELEASE OF FERTILIZERS IN LETTUCE CROP. Engenharia Agrícola, 37(4), 656-664. doi:10.1590/1809-4430-eng.agric.v37n4p656-664/2017 es_ES
dc.description.references Merten, G. H., Capel, P. D., & Minella, J. P. G. (2013). Effects of suspended sediment concentration and grain size on three optical turbidity sensors. Journal of Soils and Sediments, 14(7), 1235-1241. doi:10.1007/s11368-013-0813-0 es_ES
dc.description.references Comsol Multiphysicshttps://www.comsol.com/ es_ES
dc.description.references Kleinberg, R. L., Chew, W. C., & Griffin, D. D. (1989). Noncontacting electrical conductivity sensor for remote, hostile environments. IEEE Transactions on Instrumentation and Measurement, 38(1), 22-26. doi:10.1109/19.19992 es_ES
dc.description.references Parra, L., Marín, J., Mauri, P. V., Lloret, J., Torices, V., & Massager, A. (2019). Scatternet Formation Protocol for Environmental Monitoring in a Smart Garden. Network Protocols and Algorithms, 10(3), 63. doi:10.5296/npa.v10i3.14122 es_ES
dc.description.references Wood, L. T., Rottmann, R. M., & Barrera, R. (2004). Faraday’s law, Lenz’s law, and conservation of energy. American Journal of Physics, 72(3), 376-380. doi:10.1119/1.1646131 es_ES
dc.description.references Parra, L., Sendra, S., Lloret, J., & Bosch, I. (2015). Development of a Conductivity Sensor for Monitoring Groundwater Resources to Optimize Water Management in Smart City Environments. Sensors, 15(9), 20990-21015. doi:10.3390/s150920990 es_ES
dc.description.references Karagianni, E. A. (2015). ELECTROMAGNETIC WAVES UNDER SEA: BOW-TIE ANTENNAS DESIGN FOR WI-FI UNDERWATER COMMUNICATIONS. Progress In Electromagnetics Research M, 41, 189-198. doi:10.2528/pierm15012106 es_ES
dc.description.references https://www.tek.com/signal-generator/afg1022 es_ES
dc.description.references https://www.tek.com/oscilloscope/tbs1104 es_ES
dc.description.references http://www.crisoninstruments.com/es/laboratorio/conductimetro/desobremesa/ec-metro-basic-30 es_ES
dc.description.references https://www.leroymerlin.es/fp/19468554/fertilizante-para-citricos-geolia-uso-ecologico-1l es_ES
dc.description.references https://statgraphics.net/descargas-centurion-xvii/ es_ES
dc.description.references Matsoukis, A., Kamoutsis, A., & Chronopoulou-Sereli, A. (2018). A Note on the Flowering of Ajuga orientalis L. in Relation to Air Temperature in Mount Aenos (Cephalonia, Greece). Current Agriculture Research Journal, 6(3), 261-267. doi:10.12944/carj.6.3.05 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem