- -

A Controller for Optimum Electrical Power Extraction from a Small Grid-Interconnected Wind Turbine

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Controller for Optimum Electrical Power Extraction from a Small Grid-Interconnected Wind Turbine

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Sánchez, Tania María es_ES
dc.contributor.author Mishra, Arbinda Kumar es_ES
dc.contributor.author Hurtado-Perez, Elias es_ES
dc.contributor.author Puche-Panadero, Rubén es_ES
dc.contributor.author Fernández-Guillamón, Ana es_ES
dc.date.accessioned 2021-06-04T03:31:47Z
dc.date.available 2021-06-04T03:31:47Z
dc.date.issued 2020-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167316
dc.description.abstract [EN] Currently, wind power is the fastest-growing means of electricity generation in the world. To obtain the maximum efficiency from the wind energy conversion system, it is important that the control strategy design is carried out in the best possible way. In fact, besides regulating the frequency and output voltage of the electrical signal, these strategies should also extract energy from wind power at the maximum level of efficiency. With advances in micro-controllers and electronic components, the design and implementation of efficient controllers are steadily improving. This paper presents a maximum power point tracking controller scheme for a small wind energy conversion system with a variable speed permanent magnet synchronous generator. With the controller, the system extracts optimum possible power from the wind speed reaching the wind turbine and feeds it to the grid at constant voltage and frequency based on the AC-DC-AC conversion system. A MATLAB/SimPowerSystems environment was used to carry out the simulations of the system. Simulation results were analyzed under variable wind speed and load conditions, exhibiting the performance of the proposed controller. It was observed that the controllers can extract maximum power and regulate the voltage and frequency under such variable conditions. Extensive results are included in the paper. es_ES
dc.description.sponsorship This work was partially supported by the Spanish Ministry of Education, Culture and Sports-reference FPU16/04282. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Energies es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Small wind es_ES
dc.subject Maximum power point tracking es_ES
dc.subject Type 4 es_ES
dc.subject Variable speed wind turbine es_ES
dc.subject Wind turbine control es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title A Controller for Optimum Electrical Power Extraction from a Small Grid-Interconnected Wind Turbine es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/en13215809 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU16%2F04282/ES/FPU16%2F04282/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.description.bibliographicCitation García-Sánchez, TM.; Mishra, AK.; Hurtado-Perez, E.; Puche-Panadero, R.; Fernández-Guillamón, A. (2020). A Controller for Optimum Electrical Power Extraction from a Small Grid-Interconnected Wind Turbine. Energies. 13(21):1-16. https://doi.org/10.3390/en13215809 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/en13215809 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 21 es_ES
dc.identifier.eissn 1996-1073 es_ES
dc.relation.pasarela S\423723 es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Fernández-Guillamón, A., Villena-Lapaz, J., Vigueras-Rodríguez, A., García-Sánchez, T., & Molina-García, Á. (2018). An Adaptive Frequency Strategy for Variable Speed Wind Turbines: Application to High Wind Integration Into Power Systems. Energies, 11(6), 1436. doi:10.3390/en11061436 es_ES
dc.description.references Fernández-Guillamón, A., Sarasúa, J. I., Chazarra, M., Vigueras-Rodríguez, A., Fernández-Muñoz, D., & Molina-García, Á. (2020). Frequency control analysis based on unit commitment schemes with high wind power integration: A Spanish isolated power system case study. International Journal of Electrical Power & Energy Systems, 121, 106044. doi:10.1016/j.ijepes.2020.106044 es_ES
dc.description.references Huber, M., Dimkova, D., & Hamacher, T. (2014). Integration of wind and solar power in Europe: Assessment of flexibility requirements. Energy, 69, 236-246. doi:10.1016/j.energy.2014.02.109 es_ES
dc.description.references Fernández-Guillamón, A., Martínez-Lucas, G., Molina-García, Á., & Sarasua, J.-I. (2020). Hybrid Wind–PV Frequency Control Strategy under Variable Weather Conditions in Isolated Power Systems. Sustainability, 12(18), 7750. doi:10.3390/su12187750 es_ES
dc.description.references Fernández‐Guillamón, A., Vigueras‐Rodríguez, A., & Molina‐García, Á. (2019). Analysis of power system inertia estimation in high wind power plant integration scenarios. IET Renewable Power Generation, 13(15), 2807-2816. doi:10.1049/iet-rpg.2019.0220 es_ES
dc.description.references Fernández-Guillamón, A., Das, K., Cutululis, N. A., & Molina-García, Á. (2019). Offshore Wind Power Integration into Future Power Systems: Overview and Trends. Journal of Marine Science and Engineering, 7(11), 399. doi:10.3390/jmse7110399 es_ES
dc.description.references Muñoz-Benavente, I., Hansen, A. D., Gómez-Lázaro, E., García-Sánchez, T., Fernández-Guillamón, A., & Molina-García, Á. (2019). Impact of Combined Demand-Response and Wind Power Plant Participation in Frequency Control for Multi-Area Power Systems. Energies, 12(9), 1687. doi:10.3390/en12091687 es_ES
dc.description.references Gil-García, I. C., García-Cascales, M. S., Fernández-Guillamón, A., & Molina-García, A. (2019). Categorization and Analysis of Relevant Factors for Optimal Locations in Onshore and Offshore Wind Power Plants: A Taxonomic Review. Journal of Marine Science and Engineering, 7(11), 391. doi:10.3390/jmse7110391 es_ES
dc.description.references Molina-Garcia, A., Fernandez-Guillamon, A., Gomez-Lazaro, E., Honrubia-Escribano, A., & Bueso, M. C. (2019). Vertical Wind Profile Characterization and Identification of Patterns Based on a Shape Clustering Algorithm. IEEE Access, 7, 30890-30904. doi:10.1109/access.2019.2902242 es_ES
dc.description.references Global Wind Report 2019https://gwec.net/global-wind-report-2019/ es_ES
dc.description.references Chagas, C. C. M., Pereira, M. G., Rosa, L. P., da Silva, N. F., Freitas, M. A. V., & Hunt, J. D. (2020). From Megawatts to Kilowatts: A Review of Small Wind Turbine Applications, Lessons From The US to Brazil. Sustainability, 12(7), 2760. doi:10.3390/su12072760 es_ES
dc.description.references Culotta, S., Franzitta, V., Milone, D., & Moncada Lo Giudice, G. (2015). Small Wind Technology Diffusion in Suburban Areas of Sicily. Sustainability, 7(9), 12693-12708. doi:10.3390/su70912693 es_ES
dc.description.references Nazir, M. S., Wang, Y., Bilal, M., Sohail, H. M., Kadhem, A. A., Nazir, H. M. R., … Ma, Y. (2020). Comparison of Small-Scale Wind Energy Conversion Systems: Economic Indexes. Clean Technologies, 2(2), 144-155. doi:10.3390/cleantechnol2020010 es_ES
dc.description.references García-Sánchez, T., Muñoz-Benavente, I., Gómez-Lázaro, E., & Fernández-Guillamón, A. (2020). Modelling Types 1 and 2 Wind Turbines Based on IEC 61400-27-1: Transient Response under Voltage Dips. Energies, 13(16), 4078. doi:10.3390/en13164078 es_ES
dc.description.references Fernández-Guillamón, A., Martínez-Lucas, G., Molina-García, Á., & Sarasua, J. I. (2020). An Adaptive Control Scheme for Variable Speed Wind Turbines Providing Frequency Regulation in Isolated Power Systems with Thermal Generation. Energies, 13(13), 3369. doi:10.3390/en13133369 es_ES
dc.description.references Tiwari, R., Padmanaban, S., & Neelakandan, R. (2017). Coordinated Control Strategies for a Permanent Magnet Synchronous Generator Based Wind Energy Conversion System. Energies, 10(10), 1493. doi:10.3390/en10101493 es_ES
dc.description.references Sajadi, M., De Kooning, J. D. M., Vandevelde, L., & Crevecoeur, G. (2019). Harvesting wind gust energy with small and medium wind turbines using a bidirectional control strategy. The Journal of Engineering, 2019(17), 4261-4266. doi:10.1049/joe.2018.8182 es_ES
dc.description.references Chavero-Navarrete, E., Trejo-Perea, M., Jáuregui-Correa, J. C., Carrillo-Serrano, R. V., & Ríos-Moreno, J. G. (2019). Expert Control Systems for Maximum Power Point Tracking in a Wind Turbine with PMSG: State of the Art. Applied Sciences, 9(12), 2469. doi:10.3390/app9122469 es_ES
dc.description.references Orlando, N. A., Liserre, M., Mastromauro, R. A., & Dell’Aquila, A. (2013). A Survey of Control Issues in PMSG-Based Small Wind-Turbine Systems. IEEE Transactions on Industrial Informatics, 9(3), 1211-1221. doi:10.1109/tii.2013.2272888 es_ES
dc.description.references Daili, Y., Gaubert, J.-P., Rahmani, L., & Harrag, A. (2019). Quantitative Feedback Theory design of robust MPPT controller for Small Wind Energy Conversion Systems: Design, analysis and experimental study. Sustainable Energy Technologies and Assessments, 35, 308-320. doi:10.1016/j.seta.2019.08.002 es_ES
dc.description.references Zhang, X., Huang, C., Hao, S., Chen, F., & Zhai, J. (2016). An Improved Adaptive-Torque-Gain MPPT Control for Direct-Driven PMSG Wind Turbines Considering Wind Farm Turbulences. Energies, 9(11), 977. doi:10.3390/en9110977 es_ES
dc.description.references Shafiei, A., Dehkordi, B. M., Kiyoumarsi, A., & Farhangi, S. (2017). A Control Approach for a Small-Scale PMSG-Based WECS in the Whole Wind Speed Range. IEEE Transactions on Power Electronics, 32(12), 9117-9130. doi:10.1109/tpel.2017.2655940 es_ES
dc.description.references Oliveira, T. D., Tofaneli, L. A., & Santos, A. Á. B. (2020). Combined effects of pitch angle, rotational speed and site wind distribution in small HAWT performance. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(8). doi:10.1007/s40430-020-02501-4 es_ES
dc.description.references Battisti, L., Benini, E., Brighenti, A., Dell’Anna, S., & Raciti Castelli, M. (2018). Small wind turbine effectiveness in the urban environment. Renewable Energy, 129, 102-113. doi:10.1016/j.renene.2018.05.062 es_ES
dc.description.references Jeong, H. G., Seung, R. H., & Lee, K. B. (2012). An Improved Maximum Power Point Tracking Method for Wind Power Systems. Energies, 5(5), 1339-1354. doi:10.3390/en5051339 es_ES
dc.description.references Zhu, Y., Cheng, M., Hua, W., & Wang, W. (2012). A Novel Maximum Power Point Tracking Control for Permanent Magnet Direct Drive Wind Energy Conversion Systems. Energies, 5(5), 1398-1412. doi:10.3390/en5051398 es_ES
dc.description.references Chen, J.-H., & Hung, W. (2015). Blade Fault Diagnosis in Small Wind Power Systems Using MPPT with Optimized Control Parameters. Energies, 8(9), 9191-9210. doi:10.3390/en8099191 es_ES
dc.description.references Syahputra, R., & Soesanti, I. (2019). Performance Improvement for Small-Scale Wind Turbine System Based on Maximum Power Point Tracking Control. Energies, 12(20), 3938. doi:10.3390/en12203938 es_ES
dc.description.references Aubrée, R., Auger, F., Macé, M., & Loron, L. (2016). Design of an efficient small wind-energy conversion system with an adaptive sensorless MPPT strategy. Renewable Energy, 86, 280-291. doi:10.1016/j.renene.2015.07.091 es_ES
dc.description.references Lopez-Flores, D. R., Duran-Gomez, J. L., & Chacon-Murguia, M. I. (2020). A Mechanical Sensorless MPPT Algorithm for a Wind Energy Conversion System based on a Modular Multilayer Perceptron and a Processor-in-the-Loop Approach. Electric Power Systems Research, 186, 106409. doi:10.1016/j.epsr.2020.106409 es_ES
dc.description.references Urtasun, A., Sanchis, P., San Martín, I., López, J., & Marroyo, L. (2013). Modeling of small wind turbines based on PMSG with diode bridge for sensorless maximum power tracking. Renewable Energy, 55, 138-149. doi:10.1016/j.renene.2012.12.035 es_ES
dc.description.references Kot, R., Rolak, M., & Malinowski, M. (2013). Comparison of maximum peak power tracking algorithms for a small wind turbine. Mathematics and Computers in Simulation, 91, 29-40. doi:10.1016/j.matcom.2013.03.010 es_ES
dc.description.references Muhsen, H., Al-Kouz, W., & Khan, W. (2019). Small Wind Turbine Blade Design and Optimization. Symmetry, 12(1), 18. doi:10.3390/sym12010018 es_ES
dc.description.references Qi, Z., & Lin, E. (2012). Integrated power control for small wind power system. Journal of Power Sources, 217, 322-328. doi:10.1016/j.jpowsour.2012.06.039 es_ES
dc.description.references Doll, C. N. H., & Pachauri, S. (2010). Estimating rural populations without access to electricity in developing countries through night-time light satellite imagery. Energy Policy, 38(10), 5661-5670. doi:10.1016/j.enpol.2010.05.014 es_ES
dc.description.references Zhang, S., & Qi, J. (2011). Small wind power in China: Current status and future potentials. Renewable and Sustainable Energy Reviews, 15(5), 2457-2460. doi:10.1016/j.rser.2011.02.009 es_ES
dc.description.references Rehman, S., & Sahin, A. Z. (2012). Wind power utilization for water pumping using small wind turbines in Saudi Arabia: A techno-economical review. Renewable and Sustainable Energy Reviews, 16(7), 4470-4478. doi:10.1016/j.rser.2012.04.036 es_ES
dc.description.references Park, J. H., Chung, M. H., & Park, J. C. (2016). Development of a small wind power system with an integrated exhaust air duct in high-rise residential buildings. Energy and Buildings, 122, 202-210. doi:10.1016/j.enbuild.2016.04.037 es_ES
dc.description.references Simic, Z., Havelka, J. G., & Bozicevic Vrhovcak, M. (2013). Small wind turbines – A unique segment of the wind power market. Renewable Energy, 50, 1027-1036. doi:10.1016/j.renene.2012.08.038 es_ES
dc.description.references Parag, Y., & Sovacool, B. K. (2016). Electricity market design for the prosumer era. Nature Energy, 1(4). doi:10.1038/nenergy.2016.32 es_ES
dc.description.references Kortabarria, I., Andreu, J., Martínez de Alegría, I., Jiménez, J., Gárate, J. I., & Robles, E. (2014). A novel adaptative maximum power point tracking algorithm for small wind turbines. Renewable Energy, 63, 785-796. doi:10.1016/j.renene.2013.10.036 es_ES
dc.description.references Emejeamara, F. C., Tomlin, A. S., & Millward-Hopkins, J. T. (2015). Urban wind: Characterisation of useful gust and energy capture. Renewable Energy, 81, 162-172. doi:10.1016/j.renene.2015.03.028 es_ES
dc.description.references Britter, R. E., & Hanna, S. R. (2003). FLOW AND DISPERSION IN URBAN AREAS. Annual Review of Fluid Mechanics, 35(1), 469-496. doi:10.1146/annurev.fluid.35.101101.161147 es_ES
dc.description.references Askarov, A., Andreev, M., & Ruban, N. (2020). Impact assessment of full-converter wind turbine generators integration on transients in power systems. THERMOPHYSICAL BASIS OF ENERGY TECHNOLOGIES (TBET 2019). doi:10.1063/5.0000832 es_ES
dc.description.references Pillay, P., & Krishnan, R. (1988). Modeling of permanent magnet motor drives. IEEE Transactions on Industrial Electronics, 35(4), 537-541. doi:10.1109/41.9176 es_ES
dc.description.references Shariatpanah, H., Fadaeinedjad, R., & Rashidinejad, M. (2013). A New Model for PMSG-Based Wind Turbine With Yaw Control. IEEE Transactions on Energy Conversion, 28(4), 929-937. doi:10.1109/tec.2013.2281814 es_ES
dc.description.references Ata, R., & Kocyigit, Y. (2010). An adaptive neuro-fuzzy inference system approach for prediction of tip speed ratio in wind turbines. Expert Systems with Applications, 37(7), 5454-5460. doi:10.1016/j.eswa.2010.02.068 es_ES
dc.description.references Anelion SW 3.5 GThttps://www.wind-turbine-models.com/turbines/950-anelion-sw-3.5-gt es_ES
dc.description.references Salles, M. B. C., Hameyer, K., Cardoso, J. R., Grilo, A. P., & Rahmann, C. (2010). Crowbar System in Doubly Fed Induction Wind Generators. Energies, 3(4), 738-753. doi:10.3390/en3040738 es_ES
dc.description.references Kim, Y.-S., Chung, I.-Y., & Moon, S.-I. (2015). Tuning of the PI Controller Parameters of a PMSG Wind Turbine to Improve Control Performance under Various Wind Speeds. Energies, 8(2), 1406-1425. doi:10.3390/en8021406 es_ES
dc.description.references Widanagama Arachchige, L., Rajapakse, A., & Muthumuni, D. (2017). Implementation, Comparison and Application of an Average Simulation Model of a Wind Turbine Driven Doubly Fed Induction Generator. Energies, 10(11), 1726. doi:10.3390/en10111726 es_ES
dc.description.references Kim, C., Gui, Y., Zhao, H., & Kim, W. (2020). Coordinated LVRT Control for a Permanent Magnet Synchronous Generator Wind Turbine with Energy Storage System. Applied Sciences, 10(9), 3085. doi:10.3390/app10093085 es_ES
dc.description.references Das, K., Hansen, A. D., & Sørensen, P. E. (2016). Understanding IEC standard wind turbine models using SimPowerSystems. Wind Engineering, 40(3), 212-227. doi:10.1177/0309524x16642058 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem