Mostrar el registro sencillo del ítem
dc.contributor.author | Colangelo, Francesco | es_ES |
dc.contributor.author | Gómez-Navarro, Tomás | es_ES |
dc.contributor.author | Farina, Ilenia | es_ES |
dc.contributor.author | Petrillo, Antonella | es_ES |
dc.date.accessioned | 2021-06-04T03:31:58Z | |
dc.date.available | 2021-06-04T03:31:58Z | |
dc.date.issued | 2020-08-06 | es_ES |
dc.identifier.issn | 0948-3349 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/167319 | |
dc.description.abstract | [EN] Purpose Construction and demolition waste (C&DW) is the largest waste stream in the European Union (EU) and all over the world. Proper management of C&DW and recycled materials¿including the correct handling of hazardous waste¿can have major benefits in terms of sustainability and the quality of life. The Waste Framework Directive 2008/98/EC aims to have 70% of C&DW recycled by 2020. However, except for a few EU countries, only about 50% of C&DW is currently being recycled. In the present research, the environmental impact of concrete with recycled aggregates and with geopolymer mixtures is analysed. The aim of the present research is to propose a comparative LCA of concrete with recycled aggregates in the context of European politics. Methods Life cycle assessment (LCA) methodology is applied using Simapro© software. A cradle to grave analysis is carried out. The results are analysed based on the database Ecoinvent 3.3 and Impact 2002+. Results Results show that the concrete with 25% recycled aggregates is the best solution from an environmental point of view. Furthermore, geopolymer mixtures could be a valid alternative to reduce the phenomenon of ¿global warming¿; however, the production of sodium silicate and sodium hydroxide has a great environmental impact. Conclusions A possible future implementation of the present study is certainly to carry out an overall assessment and to determine the most cost-effective option among the different competing alternatives through the life cycle cost analysis. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | International Journal of Life Cycle Assessment | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | C&DW | es_ES |
dc.subject | LCA | es_ES |
dc.subject | Recycled aggregate | es_ES |
dc.subject | Circular economy | es_ES |
dc.subject | Geopolymer concrete mixtures | es_ES |
dc.subject.classification | PROYECTOS DE INGENIERIA | es_ES |
dc.title | Comparative LCA of concrete with recycled aggregates: a circular economy mindset in Europe | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11367-020-01798-6 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/730283/EU/Green Cities for Climate and Water Resilience, Sustainable Economic Growth, Healthy Citizens and Environments/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Proyectos de Ingeniería - Departament de Projectes d'Enginyeria | es_ES |
dc.description.bibliographicCitation | Colangelo, F.; Gómez-Navarro, T.; Farina, I.; Petrillo, A. (2020). Comparative LCA of concrete with recycled aggregates: a circular economy mindset in Europe. International Journal of Life Cycle Assessment. 25(9):1790-1804. https://doi.org/10.1007/s11367-020-01798-6 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11367-020-01798-6 | es_ES |
dc.description.upvformatpinicio | 1790 | es_ES |
dc.description.upvformatpfin | 1804 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 25 | es_ES |
dc.description.issue | 9 | es_ES |
dc.relation.pasarela | S\417011 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.description.references | Akhtar A, Sarmah (2018) Construction and demolition waste generation and properties of recycled aggregate concrete: a global perspective. J Cleaner Prod 186:262–281 | es_ES |
dc.description.references | Bare JC, Hofstetter P, Penningtonne DW, Helias A, de Haes U (2000) Midpoints versus endpoints: the sacrifices and benefits. Int J Life Cycle Assess 5(6):319–326 | es_ES |
dc.description.references | Blengini GA, Garbarino E (2010) Resources and waste management in Turin (Italy): the role of recycled aggregates in the sustainable supply mix. J Clean Prod 18(10–11):1021–1030 | es_ES |
dc.description.references | Blengini GA, Garbarino E, Šolar S, Shields DJ, Hámor T, Vinai R, Agioutantis Z (2012) Life cycle assessment guidelines for the sustainable production and recycling of aggregates: the sustainable aggregates resource management project (SARMa). J Clean Prod 27:177–181 | es_ES |
dc.description.references | Blengini GA, Garbarino E, Bevilacqua P (2017) Sustainability and integration between mineral resources and C&DW management: overview of key issues towards a resource-efficient Europe. Env Eng Man J 16(2):493–502 | es_ES |
dc.description.references | Borghi G, Pantini S, Rigamonti L (2018) Life cycle assessment of non-hazardous construction and demolition waste (CDW) management in Lombardy region (Italy). J Clean Prod 184:815–825 | es_ES |
dc.description.references | Braga AM, Silvestre JD, de Brito J (2017) Compared environmental and economic impact from cradle to gate of concrete with natural and recycled coarse aggregates. J Clean Prod 162:529–543 | es_ES |
dc.description.references | Chen C, Habert G, Bouzidi Y, Jullien A, Ventura A (2010) LCA allocation procedure used as an incitative method for waste recycling: an application to mineral additions in concrete. Res Con Rec 54(12):1231–1240 | es_ES |
dc.description.references | Chen Z, Gu H, Bergman RD, Liang S (2020) Comparative life-cycle assessment of a high-rise mass timber building with an equivalent reinforced concrete alternative using the Athena impact estimator for buildings. Sustainability (Switzerland) 12(11):4708 | es_ES |
dc.description.references | Colangelo F, Cioffi R (2017) Mechanical properties and durability of mortar containing fine fraction of demolition wastes produced by selective demolition in South Italy. Comp Part B: Eng 115:43–50 | es_ES |
dc.description.references | Colangelo F, Petrillo A, Cioffi R, Borrelli C, Forcina A (2018a) Life cycle assessment of recycled concretes: a case study in southern Italy. Sci Total Env 615:1506–1517 | es_ES |
dc.description.references | Colangelo F, Forcina A, Farina I, Petrillo A (2018b) Life cycle assessment (LCA) of different kinds of concrete containing waste for sustainable construction. Buildings 8(5):70 | es_ES |
dc.description.references | Colangelo F, Navarro TG, Petrillo A, Farina I, Cioffi R (2020) Life-cycle impact of concrete with recycled materials. Encyclopedia of Renewable and Sustainable Materials, Volume 5(2020):414–421 | es_ES |
dc.description.references | COM (2012) 433, COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT AND THE COUNCIL Strategy for the sustainable competitiveness of the construction sector and its enterprises, http://eur-lex.europa.eu/procedure/EN/201859, Brussels, 31.7.2012, COM(2012) 433 final | es_ES |
dc.description.references | COM (2014) 445, COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT AND THE COUNCIL, http://ec.europa.eu/environment/eussd/pdf/SustainableBuildingsCommunication.pdf, Brussels, 1.7.2014 COM(2014) 445 final | es_ES |
dc.description.references | Davidovits J (2018) Geopolymers based on natural and synthetic metakaolin a critical review. Ceramic Eng Science Proc 38(3):201–214 | es_ES |
dc.description.references | Di Maria A, Eyckmans J, Van Acker K (2018) Downcycling versus recycling of construction and demolition waste: combining LCA and LCC to support sustainable policy making. Waste Man 75:3–21 | es_ES |
dc.description.references | Directive 2008/98/EC on waste (Waste Framework Directive), http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32008L0098 | es_ES |
dc.description.references | EN 1992-1-1:(2004) Eurocode 2: Design of concrete structures - Part 1–1: General rules and rules for buildings | es_ES |
dc.description.references | Estanqueiro B, Dinis Silvestre J, de Brito J, Duarte Pinheiro M (2018) Environmental life cycle assessment of coarse natural and recycled aggregates for concrete. Eur J Env Civ Eng 22(4):429–449 | es_ES |
dc.description.references | Etxeberria M, Vázquez E, Marí A, Barra M (2007) Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cem Conc Res 37(5):735–742 | es_ES |
dc.description.references | EU construction & demolition waste management protocol (2016) Brussels | es_ES |
dc.description.references | Gálvez-Martos J-L, Styles D, Schoenberger H, Zeschmar-Lahl B (2018) Construction and demolition waste best management practice in Europe. Res Con Rec 136:166–178 | es_ES |
dc.description.references | Gluth, G.J.G., Arbi, K., Bernal, S.A., Bondar, D., Castel, A., Chithiraputhiran, S., Dehghan, A., Dombrowski-Daube, K., Dubey, A., Ducman, V., Peterson, K., Pipilikaki, P., Valcke, S.L.A., Ye, G., Hajimohammadi, A., van Deventer, J.S.J., 2017. Characterisation of one-part geopolymer binders made from fly ash. Waste Biom Val, 8(1), pp. 225–233 | es_ES |
dc.description.references | Gomes R, Silvestre JD, de Brito J (2020) Environmental, economic and energy life cycle assessment “from cradle to cradle” (3E-C2C) of flat roofs. Journal of Building Engineering 32:101436 | es_ES |
dc.description.references | ISO 14040 (2006) Environmental management life cycle assessment. Principles and Framework. ISO, Geneva | es_ES |
dc.description.references | ISO 14044 (2006) Environmental management. Life cycle assessment. Requirements and Guidelines. ISO, Geneva | es_ES |
dc.description.references | Jafary Nasab T, Monavari SM, Jozi SA, Majedi H (2020) Assessment of carbon footprint in the construction phase of high-rise constructions in Tehran. Int J Environ Sci Technol 17(6):3153–3164 | es_ES |
dc.description.references | Jolliet O, Margni M, Charles R, Humbert S, Payet J, Rebitzer G, Rosenbaum R (2003) Impact 2002+: a new life cycle impact assessment methodology. Int J Life Cycle Assess 8(6):324–333 | es_ES |
dc.description.references | Khan MW, Ali Y, De Felice F, Salman A, Petrillo A (2019) Impact of brick kilns industry on environment and human health in Pakistan. Sci Total Environ 678:383–389 | es_ES |
dc.description.references | Knoeri C, Sanyé-Mengual E, Althaus H-J (2013) Comparative LCA of recycled and conventional concrete for structural applications. Int J Life Cycle Assess 18(5):909–918 | es_ES |
dc.description.references | Lu W, Yan H (2011) A framework for understanding waste management studies in construction. Waste Man 31:1252–1260 | es_ES |
dc.description.references | Marinković S, Radonjanin V, Malešev M, Ignjatović I (2010) Comparative environmental assessment of natural and recycled aggregate concrete. Waste Man 30(11):2255–2264 | es_ES |
dc.description.references | Mercante IT, Bovea MD, Ibáñez-Forés V, Arena AP (2012) Life cycle assessment of construction and demolition waste management systems: a Spanish case study. Int J Life Cycle Assess 17(2):232–241 | es_ES |
dc.description.references | Pantini S, Giurato M, Rigamonti L (2019) A LCA study to investigate resource-efficient strategies for managing post-consumer gypsum waste in Lombardy region (Italy). Res Con Rec 147:157–168 | es_ES |
dc.description.references | Petrillo A, Cioffi R, De Felice F, Colangelo F, Borrelli C (2016) An environmental evaluation: a comparison between geopolymer and OPC concrete paving blocks manufacturing process in Italy. Env Prog Sus Energy 35(6):1699–1708 | es_ES |
dc.description.references | Provis JL (2017) Alkali-activated cementitious materials and concretes - steps towards standardization, American Concrete Inst, ACI Special Publication 2017-January (SP 320), pp. 444-448 | es_ES |
dc.description.references | Sayagh S, Ventura A, Hoang T, François D (2010) Sensitivity of the LCA allocation procedure for BFS recycled into pavement structures. Res cons rec 54(6):348–358 | es_ES |
dc.description.references | Tangtinthai N, Heidrich O, Manning DAC (2019) Role of policy in managing mined resources for construction in Europe and emerging economies. J Env Man 236:613–621 | es_ES |
dc.description.references | Tošić N, Marinković S, Dašić T, Stanić M (2015) Multicriteria optimization of natural and recycled aggregate concrete for structural use. J Clean Prod 87(1):766–776 | es_ES |
dc.description.references | Van den Heede P, De Belie N (2012) Environmental impact and life cycle assessment (LCA) of traditional and ‘green’ concretes: literature review and theoretical calculations. Cem Conc Comp 34(4):431–442 | es_ES |
dc.description.references | Vossberg C, Mason-Jones K, Cohen B (2014) An energetic life cycle assessment of C&D waste and container glass recycling in Cape Town, South Africa. Res Con Rec 88:39–49 | es_ES |
dc.description.references | Walling SA, Notman S, Watts P, Govan N, Provis JL (2019) Portland cement based immobilization/destruction of chemical weapon agent degradation products. Industrial Eng Chemistry Res 58(24):10383–10393 | es_ES |
dc.description.references | Wu H, Zuo J, Yuan H, Zillante G, Wang J (2019) A review of performance assessment methods for construction and demolition waste management. Res Cons Recycling 150:104407 | es_ES |
dc.description.references | Zhang C, Hu M, Dong L, Gebremariam A, Mirand-Xicotencatl B, Di Maio F, Tukker A (2019) Eco-efficiency assessment of technological innovations in high-grade concrete recycling. Res Cons Recycling 149:649–663 | es_ES |
dc.subject.ods | 12.- Garantizar las pautas de consumo y de producción sostenibles | es_ES |
dc.subject.ods | 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos | es_ES |