- -

Synthesis, Structure, Reactivity and Catalytic Implications of a Cationic, Acetylide-Bridged Trigold-JohnPhos Species

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis, Structure, Reactivity and Catalytic Implications of a Cationic, Acetylide-Bridged Trigold-JohnPhos Species

Mostrar el registro completo del ítem

Grirrane, A.; Álvarez, E.; García Gómez, H.; Corma Canós, A. (2020). Synthesis, Structure, Reactivity and Catalytic Implications of a Cationic, Acetylide-Bridged Trigold-JohnPhos Species. Chemistry - A European Journal. 26(40):8810-8818. https://doi.org/10.1002/chem.202000420

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167320

Ficheros en el ítem

Metadatos del ítem

Título: Synthesis, Structure, Reactivity and Catalytic Implications of a Cationic, Acetylide-Bridged Trigold-JohnPhos Species
Autor: Grirrane, Abdessamad Álvarez, Eleuterio García Gómez, Hermenegildo Corma Canós, Avelino
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] The cationic complex [(JohnPhos-Au)(3)(acetylide)][SbF6] (JohnPhos=(2-biphenyl)di-tert-butylphosphine, L1) has been characterised structurally and features an acetylide-trigold(I)-JohnPhos system; the trinuclear-acetylide ...[+]
Palabras clave: Acetals , Gold , Homogeneous catalysis , Multinuclear complexes , Phosphorus , Reaction mechanisms
Derechos de uso: Cerrado
Fuente:
Chemistry - A European Journal. (issn: 0947-6539 )
DOI: 10.1002/chem.202000420
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/chem.202000420
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F017/
MINECO/RTI2018-89027-CO2-R1
Agradecimientos:
Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and RTI2018-89027-CO2-R1) and the Generalitat Valenciana (Prometeo 2013-2014) is gratefully acknowledged.
Tipo: Artículo

References

Hashmi, A. S. K., & Hutchings, G. J. (2006). Gold Catalysis. Angewandte Chemie International Edition, 45(47), 7896-7936. doi:10.1002/anie.200602454

Hashmi, A. S. K., & Hutchings, G. J. (2006). Gold-Katalyse. Angewandte Chemie, 118(47), 8064-8105. doi:10.1002/ange.200602454

Arcadi, A. (2008). Alternative Synthetic Methods through New Developments in Catalysis by Gold. Chemical Reviews, 108(8), 3266-3325. doi:10.1021/cr068435d [+]
Hashmi, A. S. K., & Hutchings, G. J. (2006). Gold Catalysis. Angewandte Chemie International Edition, 45(47), 7896-7936. doi:10.1002/anie.200602454

Hashmi, A. S. K., & Hutchings, G. J. (2006). Gold-Katalyse. Angewandte Chemie, 118(47), 8064-8105. doi:10.1002/ange.200602454

Arcadi, A. (2008). Alternative Synthetic Methods through New Developments in Catalysis by Gold. Chemical Reviews, 108(8), 3266-3325. doi:10.1021/cr068435d

Díez-González, S., Marion, N., & Nolan, S. P. (2009). N-Heterocyclic Carbenes in Late Transition Metal Catalysis. Chemical Reviews, 109(8), 3612-3676. doi:10.1021/cr900074m

Gorin, D. J., Sherry, B. D., & Toste, F. D. (2008). Ligand Effects in Homogeneous Au Catalysis. Chemical Reviews, 108(8), 3351-3378. doi:10.1021/cr068430g

Fürstner, A., & Davies, P. W. (2007). Catalytic Carbophilic Activation: Catalysis by Platinum and Gold π Acids. Angewandte Chemie International Edition, 46(19), 3410-3449. doi:10.1002/anie.200604335

Fürstner, A., & Davies, P. W. (2007). Katalytische carbophile Aktivierung: Platin- und Gold-π-Säuren als Katalysatoren. Angewandte Chemie, 119(19), 3478-3519. doi:10.1002/ange.200604335

Pflästerer, D., & Hashmi, A. S. K. (2016). Gold catalysis in total synthesis – recent achievements. Chemical Society Reviews, 45(5), 1331-1367. doi:10.1039/c5cs00721f

Prati, L., & Villa, A. (2013). Gold Colloids: From Quasi-Homogeneous to Heterogeneous Catalytic Systems. Accounts of Chemical Research, 47(3), 855-863. doi:10.1021/ar400170j

Hashmi, A. S. K. (2007). Gold-Catalyzed Organic Reactions. Chemical Reviews, 107(7), 3180-3211. doi:10.1021/cr000436x

Hashmi, A. S. K. (2014). Dual Gold Catalysis. Accounts of Chemical Research, 47(3), 864-876. doi:10.1021/ar500015k

Teles, J. H., Brode, S., & Chabanas, M. (1998). Cationic Gold(I) Complexes: Highly Efficient Catalysts for the Addition of Alcohols to Alkynes. Angewandte Chemie International Edition, 37(10), 1415-1418. doi:10.1002/(sici)1521-3773(19980605)37:10<1415::aid-anie1415>3.0.co;2-n

Teles, J. H., Brode, S., & Chabanas, M. (1998). Kationische Gold(I)-Komplexe: hocheffiziente Katalysatoren für die Addition von Alkoholen an Alkine. Angewandte Chemie, 110(10), 1475-1478. doi:10.1002/(sici)1521-3757(19980518)110:10<1475::aid-ange1475>3.0.co;2-l

Hashmi, A. S. K., Schwarz, L., Choi, J.-H., & Frost, T. M. (2000). A New Gold-Catalyzed C−C Bond Formation. Angewandte Chemie International Edition, 39(13), 2285-2288. doi:10.1002/1521-3773(20000703)39:13<2285::aid-anie2285>3.0.co;2-f

Hashmi, A. S. K., Schwarz, L., Choi, J.-H., & Frost, T. M. (2000). Eine neue Gold-katalysierte C-C-Bindungsknüpfung. Angewandte Chemie, 112(13), 2382-2385. doi:10.1002/1521-3757(20000703)112:13<2382::aid-ange2382>3.0.co;2-r

Hashmi, A. S. K., Frost, T. M., & Bats, J. W. (2000). Highly Selective Gold-Catalyzed Arene Synthesis. Journal of the American Chemical Society, 122(46), 11553-11554. doi:10.1021/ja005570d

Schulte, P., & Behrens, U. (1998). Strong coordination of cycloheptynes by gold(i) chloride: synthesis and structure of two complexes of the type [(alkyne)AuCl]. Chemical Communications, (16), 1633-1634. doi:10.1039/a803791d

Shapiro, N. D., & Toste, F. D. (2008). Synthesis and structural characterization of isolable phosphine coinage metal  -complexes. Proceedings of the National Academy of Sciences, 105(8), 2779-2782. doi:10.1073/pnas.0710500105

Wu, J., Kroll, P., & Dias, H. V. R. (2008). Gold(I) Chloride Coordinated 3-Hexyne. Inorganic Chemistry, 48(2), 423-425. doi:10.1021/ic8020854

Hooper, T. N., Green, M., & Russell, C. A. (2010). Cationic Au(i) alkyne complexes: synthesis, structure and reactivity. Chemical Communications, 46(13), 2313. doi:10.1039/b923900f

Lavallo, V., Frey, G. D., Kousar, S., Donnadieu, B., & Bertrand, G. (2007). Allene formation by gold catalyzed cross-coupling of masked carbenes and vinylidenes. Proceedings of the National Academy of Sciences, 104(34), 13569-13573. doi:10.1073/pnas.0705809104

Seidel, G., Mynott, R., & Fürstner, A. (2009). Elementary Steps of Gold Catalysis: NMR Spectroscopy Reveals the Highly Cationic Character of a «Gold Carbenoid». Angewandte Chemie International Edition, 48(14), 2510-2513. doi:10.1002/anie.200806059

Seidel, G., Mynott, R., & Fürstner, A. (2009). Elementary Steps of Gold Catalysis: NMR Spectroscopy Reveals the Highly Cationic Character of a «Gold Carbenoid». Angewandte Chemie, 121(14), 2548-2551. doi:10.1002/ange.200806059

Benitez, D., Shapiro, N. D., Tkatchouk, E., Wang, Y., Goddard, W. A., & Toste, F. D. (2009). A bonding model for gold(I) carbene complexes. Nature Chemistry, 1(6), 482-486. doi:10.1038/nchem.331

Hashmi, A. S. K. (2010). Homogeneous Gold Catalysis Beyond Assumptions and Proposals-Characterized Intermediates. Angewandte Chemie International Edition, 49(31), 5232-5241. doi:10.1002/anie.200907078

Hashmi, A. S. K. (2010). Homogene Gold-Katalyse jenseits von Vermutungen und Annahmen - charakterisierte Intermediate. Angewandte Chemie, 122(31), 5360-5369. doi:10.1002/ange.200907078

Blanco, M. C., Cámara, J., Gimeno, M. C., Jones, P. G., Laguna, A., López-de-Luzuriaga, J. M., … Villacampa, M. D. (2011). Luminescent Homo- and Heteropolynuclear Gold Complexes Stabilized by a Unique Acetylide Fragment. Organometallics, 31(7), 2597-2605. doi:10.1021/om200397t

Braun, I., Asiri, A. M., & Hashmi, A. S. K. (2013). Gold Catalysis 2.0. ACS Catalysis, 3(8), 1902-1907. doi:10.1021/cs400437s

Zhao, X., Rudolph, M., & Hashmi, A. S. K. (2019). Dual gold catalysis – an update. Chemical Communications, 55(81), 12127-12135. doi:10.1039/c9cc06078b

Grirrane, A., Garcia, H., Corma, A., & Álvarez, E. (2011). Intermolecular [2 + 2] Cycloaddition of Alkyne-Alkene Catalyzed by Au(I) Complexes. What Are the Catalytic Sites Involved? ACS Catalysis, 1(12), 1647-1653. doi:10.1021/cs2004278

Rubial, B., Ballesteros, A., & González, J. M. (2013). Gold(I)-Catalyzed Bis-Alkynylation Reaction of Aromatic Aldehydes with Alkynylsilanes. Advanced Synthesis & Catalysis, 355(17), 3337-3343. doi:10.1002/adsc.201300578

Simonneau, A., Jaroschik, F., Lesage, D., Karanik, M., Guillot, R., Malacria, M., … Gimbert, Y. (2011). Tracking gold acetylides in gold(i)-catalyzed cycloisomerization reactions of enynes. Chemical Science, 2(12), 2417. doi:10.1039/c1sc00478f

Brooner, R. E. M., & Widenhoefer, R. A. (2013). Cationic, Two-Coordinate Gold π Complexes. Angewandte Chemie International Edition, 52(45), 11714-11724. doi:10.1002/anie.201303468

Brooner, R. E. M., & Widenhoefer, R. A. (2013). Kationische, zweifach koordinierte Gold-π-Komplexe. Angewandte Chemie, 125(45), 11930-11941. doi:10.1002/ange.201303468

Grirrane, A., Garcia, H., Corma, A., & Álvarez, E. (2013). Air-Stable, Dinuclear and Tetranuclear σ,π-Acetylide Gold(I) Complexes and Their Catalytic Implications. Chemistry - A European Journal, 19(37), 12239-12244. doi:10.1002/chem.201301623

Grirrane, A., Álvarez, E., García, H., & Corma, A. (2017). Preparation of Tremorine and Gemini Surfactant Precursors with Cationic Ethynyl-Bridged Digold Catalysts. Chemistry - A European Journal, 23(12), 2792-2801. doi:10.1002/chem.201605269

Schmidbaur, H., Hamel, A., Mitzel, N. W., Schier, A., & Nogai, S. (2002). Cluster self-assembly of di[gold(I)]halonium cations. Proceedings of the National Academy of Sciences, 99(8), 4916-4921. doi:10.1073/pnas.062643599

Abdou, H. E., Mohamed, A. A., & Fackler, J. P. (2004). Synthesis and X-ray Structures of Dinuclear and Trinuclear Gold(I) and Dinuclear Gold(II) Amidinate Complexes. Inorganic Chemistry, 44(2), 166-168. doi:10.1021/ic048855q

Escalle, A., Mora, G., Gagosz, F., Mézailles, N., Le Goff, X. F., Jean, Y., & Le Floch, P. (2009). Cationic Dimetallic Gold Hydride Complex Stabilized by a Xantphos-Phosphole ligand: Synthesis, X-ray Crystal Structure, and Density Functional Theory Study. Inorganic Chemistry, 48(17), 8415-8422. doi:10.1021/ic901014r

Hashmi, A. S. K., Lauterbach, T., Nösel, P., Vilhelmsen, M. H., Rudolph, M., & Rominger, F. (2012). Dual Gold Catalysis: σ,π-Propyne Acetylide and Hydroxyl-Bridged Digold Complexes as Easy-To-Prepare and Easy-To-Handle Precatalysts. Chemistry - A European Journal, 19(3), 1058-1065. doi:10.1002/chem.201203010

Grirrane, A., Álvarez, E., García, H., & Corma, A. (2014). Deactivation of Cationic Cu I and Au I Catalysts for A 3 Coupling by CH 2 Cl 2  : Mechanistic Implications of the Formation of Neutral Cu I and Au I Chlorides. Angewandte Chemie International Edition, 53(28), 7253-7258. doi:10.1002/anie.201403973

Grirrane, A., Álvarez, E., García, H., & Corma, A. (2014). Deactivation of Cationic Cu I and Au I Catalysts for A 3 Coupling by CH 2 Cl 2  : Mechanistic Implications of the Formation of Neutral Cu I and Au I Chlorides. Angewandte Chemie, 126(28), 7381-7386. doi:10.1002/ange.201403973

Hashmi, A. S. K., Blanco, M. C., Kurpejović, E., Frey, W., & Bats, J. W. (2006). Gold Catalysis: First Applications of Cationic Binuclear Gold(I) Complexes and the First Intermolecular Reaction of an Alkyne with a Furan. Advanced Synthesis & Catalysis, 348(6), 709-713. doi:10.1002/adsc.200606012

Uson, R., Laguna, A., & Castrillo, M. V. (1979). Unusual Cationic Single-Bridged Binuclear Complexes of Gold(I) and Gold(III). Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 9(4), 317-324. doi:10.1080/00945717908069748

Bayler, A., Bauer, A., & Schmidbaur, H. (1997). Synthesis and Structure of Binuclear Single-Bridged Bis[(phosphane)gold(I)]halogenonium Complexes. Chemische Berichte, 130(1), 115-118. doi:10.1002/cber.19971300119

Grirrane, A., Álvarez, E., García, H., & Corma, A. (2014). Cationic Copper(I) Complexes as Highly Efficient Catalysts for Single and Double A3-Coupling Mannich Reactions of Terminal Alkynes: Mechanistic Insights and Comparative Studies with Analogous Gold(I) Complexes. Chemistry - A European Journal, 20(44), 14317-14328. doi:10.1002/chem.201403927

Maj, A. M., Pietrusiewicz, K. M., Suisse, I., Agbossou, F., & Mortreux*, A. (2001). P-chiral β-aminophosphine oxides vs. β-aminophosphines as auxiliaries for ruthenium catalysed enantioselective transfer hydrogenation of arylketones. Journal of Organometallic Chemistry, 626(1-2), 157-160. doi:10.1016/s0022-328x(01)00678-7

Rahman, M. S., Oliana, M., & Hii, K. K. (Mimi). (2004). Mixed donor aminophosphine oxide ligands in ruthenium-catalysed asymmetric transfer hydrogenation reactions. Tetrahedron: Asymmetry, 15(12), 1835-1840. doi:10.1016/j.tetasy.2004.05.001

Griffiths, D. V., Groombridge, H. J., Mahoney, P. M., Swetnam, S. P., Walton, G., & York, D. C. (2005). Nucleophilic addition to dimethylvinylphosphine sulfide as a convenient route to polydentate ligands containing the 2-dimethylphosphinoethyl unit. Tetrahedron, 61(19), 4595-4600. doi:10.1016/j.tet.2005.03.012

Barbaro, P., Bianchini, C., Giambastiani, G., & Togni, A. (2002). The first tridentate phosphine ligand combining planar, phosphorus and carbon chiralityElectronic supplementary information (ESI) available: experimental section. See http://www.rsc.org/suppdata/cc/b2/b208384a/. Chemical Communications, (22), 2672-2673. doi:10.1039/b208384a

Alajarin, M., Lopez-Leonardo, C., & Llamas-Lorente, P. (2004). Aminophosphanes as Iminophosphoranyl Synthons: Efficient P-H Addition to Activated C=C Bonds. Letters in Organic Chemistry, 1(2), 145-147. doi:10.2174/1570178043488356

Han, L.-B., & Zhao, C.-Q. (2005). Stereospecific Addition of H−P Bond to Alkenes:  A Simple Method for the Preparation of (RP)-Phenylphosphinates. The Journal of Organic Chemistry, 70(24), 10121-10123. doi:10.1021/jo051582b

Michał Pietrusiewicz, K., & Zabłocka, M. (1988). Optically active phosphine oxides. 3. Conjugate addition to vynil phosphine oxides in aqueous medium. Tetrahedron Letters, 29(8), 937-940. doi:10.1016/s0040-4039(00)82487-9

Paine, R. T., Bond, E. M., Parveen, S., Donhart, N., Duesler, E. N., Smith, K. A., & Nöth, H. (2001). Synthesis and Coordination Properties of 1-(Diphenylphosphine oxide)-1-(2‘-pyridyl N-oxide)-3-(diphenylphosphine oxide)propane. Inorganic Chemistry, 41(2), 444-448. doi:10.1021/ic0109041

Pietrusiewicz, K. M., Hozody, W., Koprowski, M., Cicchi, S., Goti, A., & Brandi, A. (1999). Asymmetric and Doubly Asymmetric 1,3-Dipolar Cycloadditons in the Synthesis of Enantiopure Organophosphorus Compounds. Phosphorus, Sulfur, and Silicon and the Related Elements, 144(1), 389-392. doi:10.1080/10426509908546263

Katritzky, A. R., Piffl, M., Lang, H., & Anders, E. (1999). Regioselectivity of the Reactions of Heteroatom-Stabilized Allyl Anions with Electrophiles. Chemical Reviews, 99(3), 665-722. doi:10.1021/cr9404297

Tan, K.-W., Liu, F., Li, Y., Tan, G.-K., & Leung, P.-H. (2006). Asymmetric synthesis of a chiral arsinophosphine via a metal template promoted asymmetric Diels–Alder reaction between diphenylvinylphosphine and 2-furyldiphenylarsine. Journal of Organometallic Chemistry, 691(22), 4753-4758. doi:10.1016/j.jorganchem.2006.07.025

Dai, Q., Gao, W., Liu, D., Kapes, L. M., & Zhang, X. (2006). Triazole-Based Monophosphine Ligands for Palladium-Catalyzed Cross-Coupling Reactions of Aryl Chlorides. The Journal of Organic Chemistry, 71(10), 3928-3934. doi:10.1021/jo060321e

Benito-Garagorri, D., Wiedermann, J., Pollak, M., Mereiter, K., & Kirchner, K. (2006). Iron(II) Complexes Bearing Tridentate PNP Pincer-Type Ligands as Catalysts for the Selective Formation of 3-Hydroxyacrylates from Aromatic Aldehydes and Ethyldiazoacetate. Organometallics, 26(1), 217-222. doi:10.1021/om060802o

Ribera, G., Mercado, L. A., Galià, M., & Cádiz, V. (2005). Flame retardant epoxy resins based on diglycidyl ether of isobutyl bis(hydroxypropyl)phosphine oxide. Journal of Applied Polymer Science, 99(4), 1367-1373. doi:10.1002/app.22325

Plotnikova, G. V., Malysheva, S. F., Gusarova, N. K., Khalliulin, A. K., Udilov, V. P., & Kuznetsov, K. L. (2008). Triorganylphosphine oxides as high-performance fire retardants for polyvinyl chloride plastisols. Russian Journal of Applied Chemistry, 81(2), 304-309. doi:10.1134/s1070427208020286

Gubin, S. P., Kataeva, N. A., & Khomutov, G. B. (2005). Promising avenues of research in nanoscience: chemistry of semiconductor nanoparticles. Russian Chemical Bulletin, 54(4), 827-852. doi:10.1007/s11172-005-0331-3

Liu, H., Owen, J. S., & Alivisatos, A. P. (2006). Mechanistic Study of Precursor Evolution in Colloidal Group II−VI Semiconductor Nanocrystal Synthesis. Journal of the American Chemical Society, 129(2), 305-312. doi:10.1021/ja0656696

Malysheva, S. F., Gusarova, N. K., Belogorlova, N. A., Kashik, T. V., Krivdin, L. B., Fedorov, S. V., & Trofimov, B. A. (2010). One-Pot Vinylation of Secondary Phosphine Chalcogenides with Vinyl Sulfoxides. Phosphorus, Sulfur, and Silicon and the Related Elements, 185(9), 1838-1844. doi:10.1080/10426500903329245

Malysheva, S. F., Gusarova, N. K., Belogorlova, N. A., Afonin, A. V., Arbuzova, S. N., & Trofimov, B. A. (1997). A new method for the synthesis of diorganylvinylphosphine oxides. Russian Chemical Bulletin, 46(10), 1799-1801. doi:10.1007/bf02495142

Rach, S. F., & Kühn, F. E. (2009). Nitrile Ligated Transition Metal Complexes with Weakly Coordinating Counteranions and Their Catalytic Applications. Chemical Reviews, 109(5), 2061-2080. doi:10.1021/cr800270h

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem