- -

A Time-Series Treatment Method to Obtain Electrical Consumption Patterns for Anomalies Detection Improvement in Electrical Consumption Profiles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Time-Series Treatment Method to Obtain Electrical Consumption Patterns for Anomalies Detection Improvement in Electrical Consumption Profiles

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Serrano-Guerrero, Xavier es_ES
dc.contributor.author Escrivá-Escrivá, Guillermo es_ES
dc.contributor.author Luna-Romero, Santiago es_ES
dc.contributor.author Clairand, Jean-Michel es_ES
dc.date.accessioned 2021-06-04T03:33:11Z
dc.date.available 2021-06-04T03:33:11Z
dc.date.issued 2020-03 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167332
dc.description.abstract [EN] Electricity consumption patterns reveal energy demand behaviors and enable strategY implementation to increase efficiency using monitoring systems. However, incorrect patterns can be obtained when the time-series components of electricity demand are not considered. Hence, this research proposes a new method for handling time-series components that significantly improves the ability to obtain patterns and detect anomalies in electrical consumption profiles. Patterns are found using the proposed method and two widespread methods for handling the time-series components, in order to compare the results. Through this study, the conditions that electricity demand data must meet for making the time-series analysis useful are established. Finally, one year of real electricity consumption is analyzed for two different cases to evaluate the effect of time-series treatment in the detection of anomalies. The proposed method differentiates between periods of high or low energy demand, identifying contextual anomalies. The results indicate that it is possible to reduce time and effort involved in data analysis, and improve the reliability of monitoring systems, without adding complex procedures. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Energies es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Electricity consumption profiles es_ES
dc.subject Electricity consumption patterns es_ES
dc.subject Building management systems es_ES
dc.subject Outlier detection es_ES
dc.subject Time-series treatment es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title A Time-Series Treatment Method to Obtain Electrical Consumption Patterns for Anomalies Detection Improvement in Electrical Consumption Profiles es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/en13051046 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPS//6602277-01/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.description.bibliographicCitation Serrano-Guerrero, X.; Escrivá-Escrivá, G.; Luna-Romero, S.; Clairand, J. (2020). A Time-Series Treatment Method to Obtain Electrical Consumption Patterns for Anomalies Detection Improvement in Electrical Consumption Profiles. Energies. 13(5):1-23. https://doi.org/10.3390/en13051046 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/en13051046 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 23 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 5 es_ES
dc.identifier.eissn 1996-1073 es_ES
dc.relation.pasarela S\404533 es_ES
dc.contributor.funder Universidad Politécnica Salesiana, Ecuador es_ES
dc.description.references Hong, T., Yang, L., Hill, D., & Feng, W. (2014). Data and analytics to inform energy retrofit of high performance buildings. Applied Energy, 126, 90-106. doi:10.1016/j.apenergy.2014.03.052 es_ES
dc.description.references Ogunjuyigbe, A. S. O., Ayodele, T. R., & Akinola, O. A. (2017). User satisfaction-induced demand side load management in residential buildings with user budget constraint. Applied Energy, 187, 352-366. doi:10.1016/j.apenergy.2016.11.071 es_ES
dc.description.references Huang, Y., Sun, Y., & Yi, S. (2018). Static and Dynamic Networking of Smart Meters Based on the Characteristics of the Electricity Usage Information. Energies, 11(6), 1532. doi:10.3390/en11061532 es_ES
dc.description.references Lin, R., Ye, Z., & Zhao, Y. (2019). OPEC: Daily Load Data Analysis Based on Optimized Evolutionary Clustering. Energies, 12(14), 2668. doi:10.3390/en12142668 es_ES
dc.description.references Hunt, L. C., Judge, G., & Ninomiya, Y. (2003). Underlying trends and seasonality in UK energy demand: a sectoral analysis. Energy Economics, 25(1), 93-118. doi:10.1016/s0140-9883(02)00072-5 es_ES
dc.description.references Serrano-Guerrero, X., Escrivá-Escrivá, G., & Roldán-Blay, C. (2018). Statistical methodology to assess changes in the electrical consumption profile of buildings. Energy and Buildings, 164, 99-108. doi:10.1016/j.enbuild.2017.12.059 es_ES
dc.description.references Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection. ACM Computing Surveys, 41(3), 1-58. doi:10.1145/1541880.1541882 es_ES
dc.description.references Escrivá-Escrivá, G., Álvarez-Bel, C., Roldán-Blay, C., & Alcázar-Ortega, M. (2011). New artificial neural network prediction method for electrical consumption forecasting based on building end-uses. Energy and Buildings, 43(11), 3112-3119. doi:10.1016/j.enbuild.2011.08.008 es_ES
dc.description.references Serrano-Guerrero, X., Prieto-Galarza, R., Huilcatanda, E., Cabrera-Zeas, J., & Escriva-Escriva, G. (2017). Election of variables and short-term forecasting of electricity demand based on backpropagation artificial neural networks. 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC). doi:10.1109/ropec.2017.8261630 es_ES
dc.description.references Jain, R. K., Smith, K. M., Culligan, P. J., & Taylor, J. E. (2014). Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy. Applied Energy, 123, 168-178. doi:10.1016/j.apenergy.2014.02.057 es_ES
dc.description.references Singh, S., & Yassine, A. (2018). Big Data Mining of Energy Time Series for Behavioral Analytics and Energy Consumption Forecasting. Energies, 11(2), 452. doi:10.3390/en11020452 es_ES
dc.description.references Jota, P. R. S., Silva, V. R. B., & Jota, F. G. (2011). Building load management using cluster and statistical analyses. International Journal of Electrical Power & Energy Systems, 33(8), 1498-1505. doi:10.1016/j.ijepes.2011.06.034 es_ES
dc.description.references Shareef, H., Ahmed, M. S., Mohamed, A., & Al Hassan, E. (2018). Review on Home Energy Management System Considering Demand Responses, Smart Technologies, and Intelligent Controllers. IEEE Access, 6, 24498-24509. doi:10.1109/access.2018.2831917 es_ES
dc.description.references Crespo Cuaresma, J., Hlouskova, J., Kossmeier, S., & Obersteiner, M. (2004). Forecasting electricity spot-prices using linear univariate time-series models. Applied Energy, 77(1), 87-106. doi:10.1016/s0306-2619(03)00096-5 es_ES
dc.description.references Janczura, J., Trück, S., Weron, R., & Wolff, R. C. (2013). Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling. Energy Economics, 38, 96-110. doi:10.1016/j.eneco.2013.03.013 es_ES
dc.description.references Angelos, E. W. S., Saavedra, O. R., Cortés, O. A. C., & de Souza, A. N. (2011). Detection and Identification of Abnormalities in Customer Consumptions in Power Distribution Systems. IEEE Transactions on Power Delivery, 26(4), 2436-2442. doi:10.1109/tpwrd.2011.2161621 es_ES
dc.description.references Milton, M.-A., Pedro, C.-O., Xavier, S.-G., & Guillermo, E.-E. (2018). Characterization and Classification of Daily Electricity Consumption Profiles: Shape Factors and k-Means Clustering Technique. E3S Web of Conferences, 64, 08004. doi:10.1051/e3sconf/20186408004 es_ES
dc.description.references Chicco, G. (2012). Overview and performance assessment of the clustering methods for electrical load pattern grouping. Energy, 42(1), 68-80. doi:10.1016/j.energy.2011.12.031 es_ES
dc.description.references Seem, J. E. (2005). Pattern recognition algorithm for determining days of the week with similar energy consumption profiles. Energy and Buildings, 37(2), 127-139. doi:10.1016/j.enbuild.2004.04.004 es_ES
dc.description.references Seem, J. E. (2007). Using intelligent data analysis to detect abnormal energy consumption in buildings. Energy and Buildings, 39(1), 52-58. doi:10.1016/j.enbuild.2006.03.033 es_ES
dc.description.references Li, X., Bowers, C. P., & Schnier, T. (2010). Classification of Energy Consumption in Buildings With Outlier Detection. IEEE Transactions on Industrial Electronics, 57(11), 3639-3644. doi:10.1109/tie.2009.2027926 es_ES
dc.description.references Capozzoli, A., Piscitelli, M. S., Brandi, S., Grassi, D., & Chicco, G. (2018). Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings. Energy, 157, 336-352. doi:10.1016/j.energy.2018.05.127 es_ES
dc.description.references Jokar, P., Arianpoo, N., & Leung, V. C. M. (2016). Electricity Theft Detection in AMI Using Customers’ Consumption Patterns. IEEE Transactions on Smart Grid, 7(1), 216-226. doi:10.1109/tsg.2015.2425222 es_ES
dc.description.references Fenza, G., Gallo, M., & Loia, V. (2019). Drift-Aware Methodology for Anomaly Detection in Smart Grid. IEEE Access, 7, 9645-9657. doi:10.1109/access.2019.2891315 es_ES
dc.description.references Araya, D. B., Grolinger, K., ElYamany, H. F., Capretz, M. A. M., & Bitsuamlak, G. (2017). An ensemble learning framework for anomaly detection in building energy consumption. Energy and Buildings, 144, 191-206. doi:10.1016/j.enbuild.2017.02.058 es_ES
dc.description.references Hayes, M. A., & Capretz, M. A. (2015). Contextual anomaly detection framework for big sensor data. Journal of Big Data, 2(1). doi:10.1186/s40537-014-0011-y es_ES
dc.description.references Cui, W., & Wang, H. (2017). A New Anomaly Detection System for School Electricity Consumption Data. Information, 8(4), 151. doi:10.3390/info8040151 es_ES
dc.description.references Fan, C., Xiao, F., Zhao, Y., & Wang, J. (2018). Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data. Applied Energy, 211, 1123-1135. doi:10.1016/j.apenergy.2017.12.005 es_ES
dc.description.references Cai, H., Shen, S., Lin, Q., Li, X., & Xiao, H. (2019). Predicting the Energy Consumption of Residential Buildings for Regional Electricity Supply-Side and Demand-Side Management. IEEE Access, 7, 30386-30397. doi:10.1109/access.2019.2901257 es_ES
dc.description.references Khan, I., Huang, J. Z., Masud, M. A., & Jiang, Q. (2016). Segmentation of Factories on Electricity Consumption Behaviors Using Load Profile Data. IEEE Access, 4, 8394-8406. doi:10.1109/access.2016.2619898 es_ES
dc.description.references Al-Jarrah, O. Y., Al-Hammadi, Y., Yoo, P. D., & Muhaidat, S. (2017). Multi-Layered Clustering for Power Consumption Profiling in Smart Grids. IEEE Access, 5, 18459-18468. doi:10.1109/access.2017.2712258 es_ES
dc.description.references Park, K.-J., & Son, S.-Y. (2019). A Novel Load Image Profile-Based Electricity Load Clustering Methodology. IEEE Access, 7, 59048-59058. doi:10.1109/access.2019.2914216 es_ES
dc.description.references Serrano-Guerrero, X., Siavichay, L.-F., Clairand, J.-M., & Escrivá-Escrivá, G. (2019). Forecasting Building Electric Consumption Patterns Through Statistical Methods. Advances in Emerging Trends and Technologies, 164-175. doi:10.1007/978-3-030-32033-1_16 es_ES
dc.description.references Li, Y., Zhang, H., Liang, X., & Huang, B. (2019). Event-Triggered-Based Distributed Cooperative Energy Management for Multienergy Systems. IEEE Transactions on Industrial Informatics, 15(4), 2008-2022. doi:10.1109/tii.2018.2862436 es_ES
dc.description.references Khalid, A., Javaid, N., Guizani, M., Alhussein, M., Aurangzeb, K., & Ilahi, M. (2018). Towards Dynamic Coordination Among Home Appliances Using Multi-Objective Energy Optimization for Demand Side Management in Smart Buildings. IEEE Access, 6, 19509-19529. doi:10.1109/access.2018.2791546 es_ES
dc.description.references Borovkova, S., & Geman, H. (2006). Analysis and Modelling of Electricity Futures Prices. Studies in Nonlinear Dynamics & Econometrics, 10(3). doi:10.2202/1558-3708.1372 es_ES
dc.subject.ods 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem