Mostrar el registro sencillo del ítem
dc.contributor.author | Serrano-Guerrero, Xavier | es_ES |
dc.contributor.author | Escrivá-Escrivá, Guillermo | es_ES |
dc.contributor.author | Luna-Romero, Santiago | es_ES |
dc.contributor.author | Clairand, Jean-Michel | es_ES |
dc.date.accessioned | 2021-06-04T03:33:11Z | |
dc.date.available | 2021-06-04T03:33:11Z | |
dc.date.issued | 2020-03 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/167332 | |
dc.description.abstract | [EN] Electricity consumption patterns reveal energy demand behaviors and enable strategY implementation to increase efficiency using monitoring systems. However, incorrect patterns can be obtained when the time-series components of electricity demand are not considered. Hence, this research proposes a new method for handling time-series components that significantly improves the ability to obtain patterns and detect anomalies in electrical consumption profiles. Patterns are found using the proposed method and two widespread methods for handling the time-series components, in order to compare the results. Through this study, the conditions that electricity demand data must meet for making the time-series analysis useful are established. Finally, one year of real electricity consumption is analyzed for two different cases to evaluate the effect of time-series treatment in the detection of anomalies. The proposed method differentiates between periods of high or low energy demand, identifying contextual anomalies. The results indicate that it is possible to reduce time and effort involved in data analysis, and improve the reliability of monitoring systems, without adding complex procedures. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Energies | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Electricity consumption profiles | es_ES |
dc.subject | Electricity consumption patterns | es_ES |
dc.subject | Building management systems | es_ES |
dc.subject | Outlier detection | es_ES |
dc.subject | Time-series treatment | es_ES |
dc.subject.classification | INGENIERIA ELECTRICA | es_ES |
dc.title | A Time-Series Treatment Method to Obtain Electrical Consumption Patterns for Anomalies Detection Improvement in Electrical Consumption Profiles | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/en13051046 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPS//6602277-01/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica | es_ES |
dc.description.bibliographicCitation | Serrano-Guerrero, X.; Escrivá-Escrivá, G.; Luna-Romero, S.; Clairand, J. (2020). A Time-Series Treatment Method to Obtain Electrical Consumption Patterns for Anomalies Detection Improvement in Electrical Consumption Profiles. Energies. 13(5):1-23. https://doi.org/10.3390/en13051046 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/en13051046 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 23 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.description.issue | 5 | es_ES |
dc.identifier.eissn | 1996-1073 | es_ES |
dc.relation.pasarela | S\404533 | es_ES |
dc.contributor.funder | Universidad Politécnica Salesiana, Ecuador | es_ES |
dc.description.references | Hong, T., Yang, L., Hill, D., & Feng, W. (2014). Data and analytics to inform energy retrofit of high performance buildings. Applied Energy, 126, 90-106. doi:10.1016/j.apenergy.2014.03.052 | es_ES |
dc.description.references | Ogunjuyigbe, A. S. O., Ayodele, T. R., & Akinola, O. A. (2017). User satisfaction-induced demand side load management in residential buildings with user budget constraint. Applied Energy, 187, 352-366. doi:10.1016/j.apenergy.2016.11.071 | es_ES |
dc.description.references | Huang, Y., Sun, Y., & Yi, S. (2018). Static and Dynamic Networking of Smart Meters Based on the Characteristics of the Electricity Usage Information. Energies, 11(6), 1532. doi:10.3390/en11061532 | es_ES |
dc.description.references | Lin, R., Ye, Z., & Zhao, Y. (2019). OPEC: Daily Load Data Analysis Based on Optimized Evolutionary Clustering. Energies, 12(14), 2668. doi:10.3390/en12142668 | es_ES |
dc.description.references | Hunt, L. C., Judge, G., & Ninomiya, Y. (2003). Underlying trends and seasonality in UK energy demand: a sectoral analysis. Energy Economics, 25(1), 93-118. doi:10.1016/s0140-9883(02)00072-5 | es_ES |
dc.description.references | Serrano-Guerrero, X., Escrivá-Escrivá, G., & Roldán-Blay, C. (2018). Statistical methodology to assess changes in the electrical consumption profile of buildings. Energy and Buildings, 164, 99-108. doi:10.1016/j.enbuild.2017.12.059 | es_ES |
dc.description.references | Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection. ACM Computing Surveys, 41(3), 1-58. doi:10.1145/1541880.1541882 | es_ES |
dc.description.references | Escrivá-Escrivá, G., Álvarez-Bel, C., Roldán-Blay, C., & Alcázar-Ortega, M. (2011). New artificial neural network prediction method for electrical consumption forecasting based on building end-uses. Energy and Buildings, 43(11), 3112-3119. doi:10.1016/j.enbuild.2011.08.008 | es_ES |
dc.description.references | Serrano-Guerrero, X., Prieto-Galarza, R., Huilcatanda, E., Cabrera-Zeas, J., & Escriva-Escriva, G. (2017). Election of variables and short-term forecasting of electricity demand based on backpropagation artificial neural networks. 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC). doi:10.1109/ropec.2017.8261630 | es_ES |
dc.description.references | Jain, R. K., Smith, K. M., Culligan, P. J., & Taylor, J. E. (2014). Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy. Applied Energy, 123, 168-178. doi:10.1016/j.apenergy.2014.02.057 | es_ES |
dc.description.references | Singh, S., & Yassine, A. (2018). Big Data Mining of Energy Time Series for Behavioral Analytics and Energy Consumption Forecasting. Energies, 11(2), 452. doi:10.3390/en11020452 | es_ES |
dc.description.references | Jota, P. R. S., Silva, V. R. B., & Jota, F. G. (2011). Building load management using cluster and statistical analyses. International Journal of Electrical Power & Energy Systems, 33(8), 1498-1505. doi:10.1016/j.ijepes.2011.06.034 | es_ES |
dc.description.references | Shareef, H., Ahmed, M. S., Mohamed, A., & Al Hassan, E. (2018). Review on Home Energy Management System Considering Demand Responses, Smart Technologies, and Intelligent Controllers. IEEE Access, 6, 24498-24509. doi:10.1109/access.2018.2831917 | es_ES |
dc.description.references | Crespo Cuaresma, J., Hlouskova, J., Kossmeier, S., & Obersteiner, M. (2004). Forecasting electricity spot-prices using linear univariate time-series models. Applied Energy, 77(1), 87-106. doi:10.1016/s0306-2619(03)00096-5 | es_ES |
dc.description.references | Janczura, J., Trück, S., Weron, R., & Wolff, R. C. (2013). Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling. Energy Economics, 38, 96-110. doi:10.1016/j.eneco.2013.03.013 | es_ES |
dc.description.references | Angelos, E. W. S., Saavedra, O. R., Cortés, O. A. C., & de Souza, A. N. (2011). Detection and Identification of Abnormalities in Customer Consumptions in Power Distribution Systems. IEEE Transactions on Power Delivery, 26(4), 2436-2442. doi:10.1109/tpwrd.2011.2161621 | es_ES |
dc.description.references | Milton, M.-A., Pedro, C.-O., Xavier, S.-G., & Guillermo, E.-E. (2018). Characterization and Classification of Daily Electricity Consumption Profiles: Shape Factors and k-Means Clustering Technique. E3S Web of Conferences, 64, 08004. doi:10.1051/e3sconf/20186408004 | es_ES |
dc.description.references | Chicco, G. (2012). Overview and performance assessment of the clustering methods for electrical load pattern grouping. Energy, 42(1), 68-80. doi:10.1016/j.energy.2011.12.031 | es_ES |
dc.description.references | Seem, J. E. (2005). Pattern recognition algorithm for determining days of the week with similar energy consumption profiles. Energy and Buildings, 37(2), 127-139. doi:10.1016/j.enbuild.2004.04.004 | es_ES |
dc.description.references | Seem, J. E. (2007). Using intelligent data analysis to detect abnormal energy consumption in buildings. Energy and Buildings, 39(1), 52-58. doi:10.1016/j.enbuild.2006.03.033 | es_ES |
dc.description.references | Li, X., Bowers, C. P., & Schnier, T. (2010). Classification of Energy Consumption in Buildings With Outlier Detection. IEEE Transactions on Industrial Electronics, 57(11), 3639-3644. doi:10.1109/tie.2009.2027926 | es_ES |
dc.description.references | Capozzoli, A., Piscitelli, M. S., Brandi, S., Grassi, D., & Chicco, G. (2018). Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings. Energy, 157, 336-352. doi:10.1016/j.energy.2018.05.127 | es_ES |
dc.description.references | Jokar, P., Arianpoo, N., & Leung, V. C. M. (2016). Electricity Theft Detection in AMI Using Customers’ Consumption Patterns. IEEE Transactions on Smart Grid, 7(1), 216-226. doi:10.1109/tsg.2015.2425222 | es_ES |
dc.description.references | Fenza, G., Gallo, M., & Loia, V. (2019). Drift-Aware Methodology for Anomaly Detection in Smart Grid. IEEE Access, 7, 9645-9657. doi:10.1109/access.2019.2891315 | es_ES |
dc.description.references | Araya, D. B., Grolinger, K., ElYamany, H. F., Capretz, M. A. M., & Bitsuamlak, G. (2017). An ensemble learning framework for anomaly detection in building energy consumption. Energy and Buildings, 144, 191-206. doi:10.1016/j.enbuild.2017.02.058 | es_ES |
dc.description.references | Hayes, M. A., & Capretz, M. A. (2015). Contextual anomaly detection framework for big sensor data. Journal of Big Data, 2(1). doi:10.1186/s40537-014-0011-y | es_ES |
dc.description.references | Cui, W., & Wang, H. (2017). A New Anomaly Detection System for School Electricity Consumption Data. Information, 8(4), 151. doi:10.3390/info8040151 | es_ES |
dc.description.references | Fan, C., Xiao, F., Zhao, Y., & Wang, J. (2018). Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data. Applied Energy, 211, 1123-1135. doi:10.1016/j.apenergy.2017.12.005 | es_ES |
dc.description.references | Cai, H., Shen, S., Lin, Q., Li, X., & Xiao, H. (2019). Predicting the Energy Consumption of Residential Buildings for Regional Electricity Supply-Side and Demand-Side Management. IEEE Access, 7, 30386-30397. doi:10.1109/access.2019.2901257 | es_ES |
dc.description.references | Khan, I., Huang, J. Z., Masud, M. A., & Jiang, Q. (2016). Segmentation of Factories on Electricity Consumption Behaviors Using Load Profile Data. IEEE Access, 4, 8394-8406. doi:10.1109/access.2016.2619898 | es_ES |
dc.description.references | Al-Jarrah, O. Y., Al-Hammadi, Y., Yoo, P. D., & Muhaidat, S. (2017). Multi-Layered Clustering for Power Consumption Profiling in Smart Grids. IEEE Access, 5, 18459-18468. doi:10.1109/access.2017.2712258 | es_ES |
dc.description.references | Park, K.-J., & Son, S.-Y. (2019). A Novel Load Image Profile-Based Electricity Load Clustering Methodology. IEEE Access, 7, 59048-59058. doi:10.1109/access.2019.2914216 | es_ES |
dc.description.references | Serrano-Guerrero, X., Siavichay, L.-F., Clairand, J.-M., & Escrivá-Escrivá, G. (2019). Forecasting Building Electric Consumption Patterns Through Statistical Methods. Advances in Emerging Trends and Technologies, 164-175. doi:10.1007/978-3-030-32033-1_16 | es_ES |
dc.description.references | Li, Y., Zhang, H., Liang, X., & Huang, B. (2019). Event-Triggered-Based Distributed Cooperative Energy Management for Multienergy Systems. IEEE Transactions on Industrial Informatics, 15(4), 2008-2022. doi:10.1109/tii.2018.2862436 | es_ES |
dc.description.references | Khalid, A., Javaid, N., Guizani, M., Alhussein, M., Aurangzeb, K., & Ilahi, M. (2018). Towards Dynamic Coordination Among Home Appliances Using Multi-Objective Energy Optimization for Demand Side Management in Smart Buildings. IEEE Access, 6, 19509-19529. doi:10.1109/access.2018.2791546 | es_ES |
dc.description.references | Borovkova, S., & Geman, H. (2006). Analysis and Modelling of Electricity Futures Prices. Studies in Nonlinear Dynamics & Econometrics, 10(3). doi:10.2202/1558-3708.1372 | es_ES |
dc.subject.ods | 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos | es_ES |