Mostrar el registro sencillo del ítem
dc.contributor.author | Escoto Simó, Miquel | es_ES |
dc.contributor.author | Montagud, Mario | es_ES |
dc.contributor.author | González-Cobos, Noemí | es_ES |
dc.contributor.author | Belinchón, Alejandro | es_ES |
dc.contributor.author | Trujillo, Adriana Valentina | es_ES |
dc.contributor.author | Romero-Chavarro, Julián Camilo | es_ES |
dc.contributor.author | Diaz-Cabrera, Julio César | es_ES |
dc.contributor.author | GARCÍA PELLICER, MARTA | es_ES |
dc.contributor.author | Quijano-Lopez, Alfredo | es_ES |
dc.date.accessioned | 2021-06-08T03:31:28Z | |
dc.date.available | 2021-06-08T03:31:28Z | |
dc.date.issued | 2020-08 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/167459 | |
dc.description.abstract | [EN] Distributed energy storage may play a key role in the operation of future low-carbon power systems as they can help to facilitate the provision of the required flexibility to cope with the intermittency and volatility featured by renewable generation. Within this context, this paper addresses an optimization methodology that will allow managing distributed storage systems of different technology and characteristics in a specific distribution network, taking into account not only the technical aspects of the network and the storage systems but also the uncertainties linked to demand and renewable energy variability. The implementation of the proposed methodology will allow facilitating the integration of energy storage systems within future smart grids. This paper's results demonstrate numerically the good performance of the developed methodology. | es_ES |
dc.description.sponsorship | This research was funded by European Regional Development Fund (Comunidad Valenciana FEDER 2014-2020 PO, CCI number: 2014ES16RFOP013) and the ITE-IVACE collaboration agreement corresponding to the annuity 2019 (file: IMDEEA-2019-38). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Energies | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Energy storage system management | es_ES |
dc.subject | Demand and generation forecast | es_ES |
dc.subject | Optimal scheduling of distributed energy storage | es_ES |
dc.subject | Distribution network modelling and simulation | es_ES |
dc.subject | Optimization models | es_ES |
dc.subject.classification | INGENIERIA ELECTRICA | es_ES |
dc.subject.classification | INGENIERIA TELEMATICA | es_ES |
dc.title | Optimal Scheduling for Energy Storage Systems in Distribution Networks | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/en13153921 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CDTI//CER-20191019/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/IVACE//IMDEEA%2F2019%2F38/ES/SOFI. Servicios para la Operación agregada de la Flexibilidad de forma Inteligente en el entorno de las smartgrid/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Tecnología Eléctrica - Institut de Tecnologia Elèctrica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica | es_ES |
dc.description.bibliographicCitation | Escoto Simó, M.; Montagud, M.; González-Cobos, N.; Belinchón, A.; Trujillo, AV.; Romero-Chavarro, JC.; Diaz-Cabrera, JC.... (2020). Optimal Scheduling for Energy Storage Systems in Distribution Networks. Energies. 13(15):1-13. https://doi.org/10.3390/en13153921 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/en13153921 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.description.issue | 15 | es_ES |
dc.identifier.eissn | 1996-1073 | es_ES |
dc.relation.pasarela | S\423887 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Institut Valencià de Competitivitat Empresarial | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Centro de desarrollo tecnológico industrial | es_ES |
dc.description.references | The Impact of the Covid-19 Crisis on Clean Energy Progresshttps://www.iea.org/articles/the-impact-of-the-covid-19-crisis-on-clean-energy-progress | es_ES |
dc.description.references | Sustainable Development Goalshttps://www.un.org/sustainabledevelopment/ | es_ES |
dc.description.references | Mesarić, P., & Krajcar, S. (2015). Home demand side management integrated with electric vehicles and renewable energy sources. Energy and Buildings, 108, 1-9. doi:10.1016/j.enbuild.2015.09.001 | es_ES |
dc.description.references | Rodrigues, E. M. G., Godina, R., Santos, S. F., Bizuayehu, A. W., Contreras, J., & Catalão, J. P. S. (2014). Energy storage systems supporting increased penetration of renewables in islanded systems. Energy, 75, 265-280. doi:10.1016/j.energy.2014.07.072 | es_ES |
dc.description.references | Hirsch, A., Parag, Y., & Guerrero, J. (2018). Microgrids: A review of technologies, key drivers, and outstanding issues. Renewable and Sustainable Energy Reviews, 90, 402-411. doi:10.1016/j.rser.2018.03.040 | es_ES |
dc.description.references | Clean Energy for All Europeans Packagehttps://ec.europa.eu/energy/topics/energy-strategy/clean-energy-all-europeans_en | es_ES |
dc.description.references | VISION 2050 Integrating Smart Networks for the Energy Transition: Serving Society and Protecting the Environmenthttps://www.etip-snet.eu/etip_publ/etip-snet-vision-2050/ | es_ES |
dc.description.references | Staying on Course: Renewable Energy in the Time of COVID-19https://www.irena.org/newsroom/pressreleases/2020/Apr/Staying-on-Course-Renewable-Energy-in-the-time-of-COVID19 | es_ES |
dc.description.references | ElNozahy, M. S., Abdel-Galil, T. K., & Salama, M. M. A. (2015). Probabilistic ESS sizing and scheduling for improved integration of PHEVs and PV systems in residential distribution systems. Electric Power Systems Research, 125, 55-66. doi:10.1016/j.epsr.2015.03.029 | es_ES |
dc.description.references | Li, Y., Yang, Z., Li, G., Zhao, D., & Tian, W. (2019). Optimal Scheduling of an Isolated Microgrid With Battery Storage Considering Load and Renewable Generation Uncertainties. IEEE Transactions on Industrial Electronics, 66(2), 1565-1575. doi:10.1109/tie.2018.2840498 | es_ES |
dc.description.references | Ciupăgeanu, D.-A., Lăzăroiu, G., & Barelli, L. (2019). Wind energy integration: Variability analysis and power system impact assessment. Energy, 185, 1183-1196. doi:10.1016/j.energy.2019.07.136 | es_ES |
dc.description.references | Hemmati, R., Saboori, H., & Jirdehi, M. A. (2017). Stochastic planning and scheduling of energy storage systems for congestion management in electric power systems including renewable energy resources. Energy, 133, 380-387. doi:10.1016/j.energy.2017.05.167 | es_ES |
dc.description.references | Xie, S., Hu, Z., & Wang, J. (2020). Two-stage robust optimization for expansion planning of active distribution systems coupled with urban transportation networks. Applied Energy, 261, 114412. doi:10.1016/j.apenergy.2019.114412 | es_ES |
dc.description.references | Saboori, H., & Jadid, S. (2020). Optimal scheduling of mobile utility-scale battery energy storage systems in electric power distribution networks. Journal of Energy Storage, 31, 101615. doi:10.1016/j.est.2020.101615 | es_ES |
dc.description.references | Kassai, M. (2017). Prediction of the HVAC Energy Demand and Consumption of a Single Family House with Different Calculation Methods. Energy Procedia, 112, 585-594. doi:10.1016/j.egypro.2017.03.1121 | es_ES |
dc.description.references | Zheng, Y., Zhao, J., Song, Y., Luo, F., Meng, K., Qiu, J., & Hill, D. J. (2018). Optimal Operation of Battery Energy Storage System Considering Distribution System Uncertainty. IEEE Transactions on Sustainable Energy, 9(3), 1051-1060. doi:10.1109/tste.2017.2762364 | es_ES |
dc.description.references | Jayasekara, N., Masoum, M. A. S., & Wolfs, P. J. (2016). Optimal Operation of Distributed Energy Storage Systems to Improve Distribution Network Load and Generation Hosting Capability. IEEE Transactions on Sustainable Energy, 7(1), 250-261. doi:10.1109/tste.2015.2487360 | es_ES |
dc.description.references | Mehrjerdi, H., & Hemmati, R. (2019). Modeling and optimal scheduling of battery energy storage systems in electric power distribution networks. Journal of Cleaner Production, 234, 810-821. doi:10.1016/j.jclepro.2019.06.195 | es_ES |
dc.description.references | Macedo, L. H., Franco, J. F., Rider, M. J., & Romero, R. (2015). Optimal Operation of Distribution Networks Considering Energy Storage Devices. IEEE Transactions on Smart Grid, 6(6), 2825-2836. doi:10.1109/tsg.2015.2419134 | es_ES |
dc.description.references | Lunci Hua, Jia Wang, & Chi Zhou. (2014). Adaptive Electric Vehicle Charging Coordination on Distribution Network. IEEE Transactions on Smart Grid, 5(6), 2666-2675. doi:10.1109/tsg.2014.2336623 | es_ES |
dc.description.references | Guo, X., Guo, X., & Su, J. (2013). Improved Support Vector Machine Short-term Power Load Forecast Model Based on Particle Swarm Optimization Parameters. Journal of Applied Sciences, 13(9), 1467-1472. doi:10.3923/jas.2013.1467.1472 | es_ES |
dc.description.references | Bordin, C., Anuta, H. O., Crossland, A., Gutierrez, I. L., Dent, C. J., & Vigo, D. (2017). A linear programming approach for battery degradation analysis and optimization in offgrid power systems with solar energy integration. Renewable Energy, 101, 417-430. doi:10.1016/j.renene.2016.08.066 | es_ES |
dc.description.references | IEEE PES AMPS DSAS Test Feeder Working Grouphttps://site.ieee.org/pes-testfeeders/resources/ | es_ES |
dc.description.references | Lotero, R. C., & Contreras, J. (2011). Distribution System Planning With Reliability. IEEE Transactions on Power Delivery, 26(4), 2552-2562. doi:10.1109/tpwrd.2011.2167990 | es_ES |
dc.description.references | Munoz-Delgado, G., Contreras, J., & Arroyo, J. M. (2015). Joint Expansion Planning of Distributed Generation and Distribution Networks. IEEE Transactions on Power Systems, 30(5), 2579-2590. doi:10.1109/tpwrs.2014.2364960 | es_ES |