- -

Optimal Scheduling for Energy Storage Systems in Distribution Networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimal Scheduling for Energy Storage Systems in Distribution Networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Escoto Simó, Miquel es_ES
dc.contributor.author Montagud, Mario es_ES
dc.contributor.author González-Cobos, Noemí es_ES
dc.contributor.author Belinchón, Alejandro es_ES
dc.contributor.author Trujillo, Adriana Valentina es_ES
dc.contributor.author Romero-Chavarro, Julián Camilo es_ES
dc.contributor.author Diaz-Cabrera, Julio César es_ES
dc.contributor.author GARCÍA PELLICER, MARTA es_ES
dc.contributor.author Quijano-Lopez, Alfredo es_ES
dc.date.accessioned 2021-06-08T03:31:28Z
dc.date.available 2021-06-08T03:31:28Z
dc.date.issued 2020-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167459
dc.description.abstract [EN] Distributed energy storage may play a key role in the operation of future low-carbon power systems as they can help to facilitate the provision of the required flexibility to cope with the intermittency and volatility featured by renewable generation. Within this context, this paper addresses an optimization methodology that will allow managing distributed storage systems of different technology and characteristics in a specific distribution network, taking into account not only the technical aspects of the network and the storage systems but also the uncertainties linked to demand and renewable energy variability. The implementation of the proposed methodology will allow facilitating the integration of energy storage systems within future smart grids. This paper's results demonstrate numerically the good performance of the developed methodology. es_ES
dc.description.sponsorship This research was funded by European Regional Development Fund (Comunidad Valenciana FEDER 2014-2020 PO, CCI number: 2014ES16RFOP013) and the ITE-IVACE collaboration agreement corresponding to the annuity 2019 (file: IMDEEA-2019-38). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Energies es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Energy storage system management es_ES
dc.subject Demand and generation forecast es_ES
dc.subject Optimal scheduling of distributed energy storage es_ES
dc.subject Distribution network modelling and simulation es_ES
dc.subject Optimization models es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title Optimal Scheduling for Energy Storage Systems in Distribution Networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/en13153921 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CDTI//CER-20191019/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/IVACE//IMDEEA%2F2019%2F38/ES/SOFI. Servicios para la Operación agregada de la Flexibilidad de forma Inteligente en el entorno de las smartgrid/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología Eléctrica - Institut de Tecnologia Elèctrica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.description.bibliographicCitation Escoto Simó, M.; Montagud, M.; González-Cobos, N.; Belinchón, A.; Trujillo, AV.; Romero-Chavarro, JC.; Diaz-Cabrera, JC.... (2020). Optimal Scheduling for Energy Storage Systems in Distribution Networks. Energies. 13(15):1-13. https://doi.org/10.3390/en13153921 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/en13153921 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 15 es_ES
dc.identifier.eissn 1996-1073 es_ES
dc.relation.pasarela S\423887 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Institut Valencià de Competitivitat Empresarial es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Centro de desarrollo tecnológico industrial es_ES
dc.description.references The Impact of the Covid-19 Crisis on Clean Energy Progresshttps://www.iea.org/articles/the-impact-of-the-covid-19-crisis-on-clean-energy-progress es_ES
dc.description.references Sustainable Development Goalshttps://www.un.org/sustainabledevelopment/ es_ES
dc.description.references Mesarić, P., & Krajcar, S. (2015). Home demand side management integrated with electric vehicles and renewable energy sources. Energy and Buildings, 108, 1-9. doi:10.1016/j.enbuild.2015.09.001 es_ES
dc.description.references Rodrigues, E. M. G., Godina, R., Santos, S. F., Bizuayehu, A. W., Contreras, J., & Catalão, J. P. S. (2014). Energy storage systems supporting increased penetration of renewables in islanded systems. Energy, 75, 265-280. doi:10.1016/j.energy.2014.07.072 es_ES
dc.description.references Hirsch, A., Parag, Y., & Guerrero, J. (2018). Microgrids: A review of technologies, key drivers, and outstanding issues. Renewable and Sustainable Energy Reviews, 90, 402-411. doi:10.1016/j.rser.2018.03.040 es_ES
dc.description.references Clean Energy for All Europeans Packagehttps://ec.europa.eu/energy/topics/energy-strategy/clean-energy-all-europeans_en es_ES
dc.description.references VISION 2050 Integrating Smart Networks for the Energy Transition: Serving Society and Protecting the Environmenthttps://www.etip-snet.eu/etip_publ/etip-snet-vision-2050/ es_ES
dc.description.references Staying on Course: Renewable Energy in the Time of COVID-19https://www.irena.org/newsroom/pressreleases/2020/Apr/Staying-on-Course-Renewable-Energy-in-the-time-of-COVID19 es_ES
dc.description.references ElNozahy, M. S., Abdel-Galil, T. K., & Salama, M. M. A. (2015). Probabilistic ESS sizing and scheduling for improved integration of PHEVs and PV systems in residential distribution systems. Electric Power Systems Research, 125, 55-66. doi:10.1016/j.epsr.2015.03.029 es_ES
dc.description.references Li, Y., Yang, Z., Li, G., Zhao, D., & Tian, W. (2019). Optimal Scheduling of an Isolated Microgrid With Battery Storage Considering Load and Renewable Generation Uncertainties. IEEE Transactions on Industrial Electronics, 66(2), 1565-1575. doi:10.1109/tie.2018.2840498 es_ES
dc.description.references Ciupăgeanu, D.-A., Lăzăroiu, G., & Barelli, L. (2019). Wind energy integration: Variability analysis and power system impact assessment. Energy, 185, 1183-1196. doi:10.1016/j.energy.2019.07.136 es_ES
dc.description.references Hemmati, R., Saboori, H., & Jirdehi, M. A. (2017). Stochastic planning and scheduling of energy storage systems for congestion management in electric power systems including renewable energy resources. Energy, 133, 380-387. doi:10.1016/j.energy.2017.05.167 es_ES
dc.description.references Xie, S., Hu, Z., & Wang, J. (2020). Two-stage robust optimization for expansion planning of active distribution systems coupled with urban transportation networks. Applied Energy, 261, 114412. doi:10.1016/j.apenergy.2019.114412 es_ES
dc.description.references Saboori, H., & Jadid, S. (2020). Optimal scheduling of mobile utility-scale battery energy storage systems in electric power distribution networks. Journal of Energy Storage, 31, 101615. doi:10.1016/j.est.2020.101615 es_ES
dc.description.references Kassai, M. (2017). Prediction of the HVAC Energy Demand and Consumption of a Single Family House with Different Calculation Methods. Energy Procedia, 112, 585-594. doi:10.1016/j.egypro.2017.03.1121 es_ES
dc.description.references Zheng, Y., Zhao, J., Song, Y., Luo, F., Meng, K., Qiu, J., & Hill, D. J. (2018). Optimal Operation of Battery Energy Storage System Considering Distribution System Uncertainty. IEEE Transactions on Sustainable Energy, 9(3), 1051-1060. doi:10.1109/tste.2017.2762364 es_ES
dc.description.references Jayasekara, N., Masoum, M. A. S., & Wolfs, P. J. (2016). Optimal Operation of Distributed Energy Storage Systems to Improve Distribution Network Load and Generation Hosting Capability. IEEE Transactions on Sustainable Energy, 7(1), 250-261. doi:10.1109/tste.2015.2487360 es_ES
dc.description.references Mehrjerdi, H., & Hemmati, R. (2019). Modeling and optimal scheduling of battery energy storage systems in electric power distribution networks. Journal of Cleaner Production, 234, 810-821. doi:10.1016/j.jclepro.2019.06.195 es_ES
dc.description.references Macedo, L. H., Franco, J. F., Rider, M. J., & Romero, R. (2015). Optimal Operation of Distribution Networks Considering Energy Storage Devices. IEEE Transactions on Smart Grid, 6(6), 2825-2836. doi:10.1109/tsg.2015.2419134 es_ES
dc.description.references Lunci Hua, Jia Wang, & Chi Zhou. (2014). Adaptive Electric Vehicle Charging Coordination on Distribution Network. IEEE Transactions on Smart Grid, 5(6), 2666-2675. doi:10.1109/tsg.2014.2336623 es_ES
dc.description.references Guo, X., Guo, X., & Su, J. (2013). Improved Support Vector Machine Short-term Power Load Forecast Model Based on Particle Swarm Optimization Parameters. Journal of Applied Sciences, 13(9), 1467-1472. doi:10.3923/jas.2013.1467.1472 es_ES
dc.description.references Bordin, C., Anuta, H. O., Crossland, A., Gutierrez, I. L., Dent, C. J., & Vigo, D. (2017). A linear programming approach for battery degradation analysis and optimization in offgrid power systems with solar energy integration. Renewable Energy, 101, 417-430. doi:10.1016/j.renene.2016.08.066 es_ES
dc.description.references IEEE PES AMPS DSAS Test Feeder Working Grouphttps://site.ieee.org/pes-testfeeders/resources/ es_ES
dc.description.references Lotero, R. C., & Contreras, J. (2011). Distribution System Planning With Reliability. IEEE Transactions on Power Delivery, 26(4), 2552-2562. doi:10.1109/tpwrd.2011.2167990 es_ES
dc.description.references Munoz-Delgado, G., Contreras, J., & Arroyo, J. M. (2015). Joint Expansion Planning of Distributed Generation and Distribution Networks. IEEE Transactions on Power Systems, 30(5), 2579-2590. doi:10.1109/tpwrs.2014.2364960 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem