- -

Influence of the Thermal Energy Storage Strategy on the Performance of a Booster Heat Pump for Domestic Hot Water Production System Based on the Use of Low Temperature Heat Source

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of the Thermal Energy Storage Strategy on the Performance of a Booster Heat Pump for Domestic Hot Water Production System Based on the Use of Low Temperature Heat Source

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Masip, X. es_ES
dc.contributor.author Navarro-Peris, Emilio es_ES
dc.contributor.author Corberán, José M. es_ES
dc.date.accessioned 2021-06-08T03:31:43Z
dc.date.available 2021-06-08T03:31:43Z
dc.date.issued 2020-12-14 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167461
dc.description.abstract [EN] Energy recovery from a low temperature heat source using heat pump technology is becoming a popular application. The domestic hot water demand has the characteristic of being very irregular along the day, with periods in which the demand is very intensive and long periods in which it is quite small. In order to use heat pumps for this kind of applications efficiently, the proper sizing and design of the water storage tank is critical. In this work, the optimal sizing of the two possible tank alternatives, closed stratified tank and variable-water-volume tank, is presented, and their respective performance compared, for domestic hot water production based on low temperature energy recovery in two potential applications (grey water and ultra-low temperature district heating). The results show that the efficiency of these kind of systems is very high and that variable-water-volume tanks allow a better use of the energy source, with an 8% higher exergy efficiency and around 3% better seasonal performance factor (SPF), being able to provide similar comfort levels with a smaller system size es_ES
dc.description.sponsorship "Vicerectorado de Investigacion, Innovacion y Transferencia of the Universitat Politecnica de Valencia (Spain)" throught the project "REDUCCION DE LAS EMISIONES DE CO2 A ALTA TEMPERATURE A PARTIR DE LA RECUPERACION DE CALOR RESIDUAL MEDIANTE EL USO DE UNA BOMBA DE CALOR"with the reference SP20180039 from the program "Primeros proyectos de investigacion (PAID-06-18)". es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Energies es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Domestic hot water DHW es_ES
dc.subject Heat pump es_ES
dc.subject Thermal energy storage TES es_ES
dc.subject Waste heat es_ES
dc.subject Exergy analysis es_ES
dc.subject Ultra low temperature district heating es_ES
dc.subject Energy efficiency es_ES
dc.subject Size optimization es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Influence of the Thermal Energy Storage Strategy on the Performance of a Booster Heat Pump for Domestic Hot Water Production System Based on the Use of Low Temperature Heat Source es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/en13246576 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//SP20180039/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Masip, X.; Navarro-Peris, E.; Corberán, JM. (2020). Influence of the Thermal Energy Storage Strategy on the Performance of a Booster Heat Pump for Domestic Hot Water Production System Based on the Use of Low Temperature Heat Source. Energies. 13(24):1-24. https://doi.org/10.3390/en13246576 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/en13246576 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 24 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 24 es_ES
dc.identifier.eissn 1996-1073 es_ES
dc.relation.pasarela S\429031 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references 2050 Long-Term Strategy https://ec.europa.eu/clima/policies/strategies/2050_en es_ES
dc.description.references Energy Consumption Buildings https://ec.europa.eu/energy/en/topics/energy-efficiency/buildings es_ES
dc.description.references Energy Consumption in Households http://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_consumption_in_households es_ES
dc.description.references https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwip0ubH48ztAhUEMN4KHRmLA0kQFjABegQIAxAC&url=https%3A%2F%2Feur-lex.europa.eu%2FLexUriServ%2FLexUriServ.do%3Furi%3DOJ%3AL%3A2009%3A140%3A0016%3A0062%3Aen%3APDF&usg=AOvVaw10tSQ3SpiUkxpXKuCB6R0n es_ES
dc.description.references Cecchinato, L., Corradi, M., Fornasieri, E., & Zamboni, L. (2005). Carbon dioxide as refrigerant for tap water heat pumps: A comparison with the traditional solution. International Journal of Refrigeration, 28(8), 1250-1258. doi:10.1016/j.ijrefrig.2005.05.019 es_ES
dc.description.references Pitarch, M., Navarro-Peris, E., Gonzálvez-Maciá, J., & Corberán, J. M. (2017). Experimental study of a subcritical heat pump booster for sanitary hot water production using a subcooler in order to enhance the efficiency of the system with a natural refrigerant (R290). International Journal of Refrigeration, 73, 226-234. doi:10.1016/j.ijrefrig.2016.08.017 es_ES
dc.description.references Pitarch, M., Hervas-Blasco, E., Navarro-Peris, E., Gonzálvez-Maciá, J., & Corberán, J. M. (2017). Evaluation of optimal subcooling in subcritical heat pump systems. International Journal of Refrigeration, 78, 18-31. doi:10.1016/j.ijrefrig.2017.03.015 es_ES
dc.description.references Hervas-Blasco, E., Pitarch, M., Navarro-Peris, E., & Corberán, J. M. (2018). Study of different subcooling control strategies in order to enhance the performance of a heat pump. International Journal of Refrigeration, 88, 324-336. doi:10.1016/j.ijrefrig.2018.02.003 es_ES
dc.description.references Meggers, F., & Leibundgut, H. (2011). The potential of wastewater heat and exergy: Decentralized high-temperature recovery with a heat pump. Energy and Buildings, 43(4), 879-886. doi:10.1016/j.enbuild.2010.12.008 es_ES
dc.description.references Liu, L., Fu, L., & Jiang, Y. (2010). Application of an exhaust heat recovery system for domestic hot water. Energy, 35(3), 1476-1481. doi:10.1016/j.energy.2009.12.004 es_ES
dc.description.references Baek, N. C., Shin, U. C., & Yoon, J. H. (2005). A study on the design and analysis of a heat pump heating system using wastewater as a heat source. Solar Energy, 78(3), 427-440. doi:10.1016/j.solener.2004.07.009 es_ES
dc.description.references Bertrand, A., Aggoune, R., & Maréchal, F. (2017). In-building waste water heat recovery: An urban-scale method for the characterisation of water streams and the assessment of energy savings and costs. Applied Energy, 192, 110-125. doi:10.1016/j.apenergy.2017.01.096 es_ES
dc.description.references High Efficiency Heat Pump for Domestic Hot Water Generation http://docs.lib.purdue.edu/iracc%0Ahttp://docs.lib.purdue.edu/iracc/953 es_ES
dc.description.references Østergaard, P. A., & Andersen, A. N. (2018). Economic feasibility of booster heat pumps in heat pump-based district heating systems. Energy, 155, 921-929. doi:10.1016/j.energy.2018.05.076 es_ES
dc.description.references Fischer, D., Toral, T. R., Lindberg, K. B., Wille-Haussmann, B., & Madani, H. (2014). Investigation of Thermal Storage Operation Strategies with Heat Pumps in German Multi Family Houses. Energy Procedia, 58, 137-144. doi:10.1016/j.egypro.2014.10.420 es_ES
dc.description.references Han, Y. M., Wang, R. Z., & Dai, Y. J. (2009). Thermal stratification within the water tank. Renewable and Sustainable Energy Reviews, 13(5), 1014-1026. doi:10.1016/j.rser.2008.03.001 es_ES
dc.description.references Haller, M. Y., Haberl, R., Mojic, I., & Frank, E. (2014). Hydraulic Integration and Control of Heat Pump and Combi-storage: Same Components, Big Differences. Energy Procedia, 48, 571-580. doi:10.1016/j.egypro.2014.02.067 es_ES
dc.description.references Liu, F., Zhu, W., Cai, Y., Groll, E. A., Ren, J., & Lei, Y. (2017). Experimental performance study on a dual-mode CO2 heat pump system with thermal storage. Applied Thermal Engineering, 115, 393-405. doi:10.1016/j.applthermaleng.2016.12.095 es_ES
dc.description.references Castell, A., Medrano, M., Solé, C., & Cabeza, L. F. (2010). Dimensionless numbers used to characterize stratification in water tanks for discharging at low flow rates. Renewable Energy, 35(10), 2192-2199. doi:10.1016/j.renene.2010.03.020 es_ES
dc.description.references Armstrong, P., Ager, D., Thompson, I., & McCulloch, M. (2014). Domestic hot water storage: Balancing thermal and sanitary performance. Energy Policy, 68, 334-339. doi:10.1016/j.enpol.2014.01.012 es_ES
dc.description.references Hervás-Blasco, E., Navarro-Peris, E., & Corberán, J. M. (2019). Optimal design and operation of a central domestic hot water heat pump system for a group of dwellings employing low temperature waste heat as a source. Energy, 188, 115979. doi:10.1016/j.energy.2019.115979 es_ES
dc.description.references Next Generation of Heat Pumps Working with Natural Fluids (NxtHPG) http://www.nxthpg.eu/ es_ES
dc.description.references Transient Systems Simulation Homepage http://www.trnsys.com es_ES
dc.description.references Masip, X., Cazorla-Marín, A., Montagud-Montalvá, C., Marchante, J., Barceló, F., & Corberán, J. M. (2019). Energy and techno-economic assessment of the effect of the coupling between an air source heat pump and the storage tank for sanitary hot water production. Applied Thermal Engineering, 159, 113853. doi:10.1016/j.applthermaleng.2019.113853 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem