Mostrar el registro sencillo del ítem
dc.contributor.author | Masip, X. | es_ES |
dc.contributor.author | Navarro-Peris, Emilio | es_ES |
dc.contributor.author | Corberán, José M. | es_ES |
dc.date.accessioned | 2021-06-08T03:31:43Z | |
dc.date.available | 2021-06-08T03:31:43Z | |
dc.date.issued | 2020-12-14 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/167461 | |
dc.description.abstract | [EN] Energy recovery from a low temperature heat source using heat pump technology is becoming a popular application. The domestic hot water demand has the characteristic of being very irregular along the day, with periods in which the demand is very intensive and long periods in which it is quite small. In order to use heat pumps for this kind of applications efficiently, the proper sizing and design of the water storage tank is critical. In this work, the optimal sizing of the two possible tank alternatives, closed stratified tank and variable-water-volume tank, is presented, and their respective performance compared, for domestic hot water production based on low temperature energy recovery in two potential applications (grey water and ultra-low temperature district heating). The results show that the efficiency of these kind of systems is very high and that variable-water-volume tanks allow a better use of the energy source, with an 8% higher exergy efficiency and around 3% better seasonal performance factor (SPF), being able to provide similar comfort levels with a smaller system size | es_ES |
dc.description.sponsorship | "Vicerectorado de Investigacion, Innovacion y Transferencia of the Universitat Politecnica de Valencia (Spain)" throught the project "REDUCCION DE LAS EMISIONES DE CO2 A ALTA TEMPERATURE A PARTIR DE LA RECUPERACION DE CALOR RESIDUAL MEDIANTE EL USO DE UNA BOMBA DE CALOR"with the reference SP20180039 from the program "Primeros proyectos de investigacion (PAID-06-18)". | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Energies | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Domestic hot water DHW | es_ES |
dc.subject | Heat pump | es_ES |
dc.subject | Thermal energy storage TES | es_ES |
dc.subject | Waste heat | es_ES |
dc.subject | Exergy analysis | es_ES |
dc.subject | Ultra low temperature district heating | es_ES |
dc.subject | Energy efficiency | es_ES |
dc.subject | Size optimization | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Influence of the Thermal Energy Storage Strategy on the Performance of a Booster Heat Pump for Domestic Hot Water Production System Based on the Use of Low Temperature Heat Source | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/en13246576 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-18/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//SP20180039/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.description.bibliographicCitation | Masip, X.; Navarro-Peris, E.; Corberán, JM. (2020). Influence of the Thermal Energy Storage Strategy on the Performance of a Booster Heat Pump for Domestic Hot Water Production System Based on the Use of Low Temperature Heat Source. Energies. 13(24):1-24. https://doi.org/10.3390/en13246576 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/en13246576 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 24 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.description.issue | 24 | es_ES |
dc.identifier.eissn | 1996-1073 | es_ES |
dc.relation.pasarela | S\429031 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | 2050 Long-Term Strategy https://ec.europa.eu/clima/policies/strategies/2050_en | es_ES |
dc.description.references | Energy Consumption Buildings https://ec.europa.eu/energy/en/topics/energy-efficiency/buildings | es_ES |
dc.description.references | Energy Consumption in Households http://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_consumption_in_households | es_ES |
dc.description.references | https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwip0ubH48ztAhUEMN4KHRmLA0kQFjABegQIAxAC&url=https%3A%2F%2Feur-lex.europa.eu%2FLexUriServ%2FLexUriServ.do%3Furi%3DOJ%3AL%3A2009%3A140%3A0016%3A0062%3Aen%3APDF&usg=AOvVaw10tSQ3SpiUkxpXKuCB6R0n | es_ES |
dc.description.references | Cecchinato, L., Corradi, M., Fornasieri, E., & Zamboni, L. (2005). Carbon dioxide as refrigerant for tap water heat pumps: A comparison with the traditional solution. International Journal of Refrigeration, 28(8), 1250-1258. doi:10.1016/j.ijrefrig.2005.05.019 | es_ES |
dc.description.references | Pitarch, M., Navarro-Peris, E., Gonzálvez-Maciá, J., & Corberán, J. M. (2017). Experimental study of a subcritical heat pump booster for sanitary hot water production using a subcooler in order to enhance the efficiency of the system with a natural refrigerant (R290). International Journal of Refrigeration, 73, 226-234. doi:10.1016/j.ijrefrig.2016.08.017 | es_ES |
dc.description.references | Pitarch, M., Hervas-Blasco, E., Navarro-Peris, E., Gonzálvez-Maciá, J., & Corberán, J. M. (2017). Evaluation of optimal subcooling in subcritical heat pump systems. International Journal of Refrigeration, 78, 18-31. doi:10.1016/j.ijrefrig.2017.03.015 | es_ES |
dc.description.references | Hervas-Blasco, E., Pitarch, M., Navarro-Peris, E., & Corberán, J. M. (2018). Study of different subcooling control strategies in order to enhance the performance of a heat pump. International Journal of Refrigeration, 88, 324-336. doi:10.1016/j.ijrefrig.2018.02.003 | es_ES |
dc.description.references | Meggers, F., & Leibundgut, H. (2011). The potential of wastewater heat and exergy: Decentralized high-temperature recovery with a heat pump. Energy and Buildings, 43(4), 879-886. doi:10.1016/j.enbuild.2010.12.008 | es_ES |
dc.description.references | Liu, L., Fu, L., & Jiang, Y. (2010). Application of an exhaust heat recovery system for domestic hot water. Energy, 35(3), 1476-1481. doi:10.1016/j.energy.2009.12.004 | es_ES |
dc.description.references | Baek, N. C., Shin, U. C., & Yoon, J. H. (2005). A study on the design and analysis of a heat pump heating system using wastewater as a heat source. Solar Energy, 78(3), 427-440. doi:10.1016/j.solener.2004.07.009 | es_ES |
dc.description.references | Bertrand, A., Aggoune, R., & Maréchal, F. (2017). In-building waste water heat recovery: An urban-scale method for the characterisation of water streams and the assessment of energy savings and costs. Applied Energy, 192, 110-125. doi:10.1016/j.apenergy.2017.01.096 | es_ES |
dc.description.references | High Efficiency Heat Pump for Domestic Hot Water Generation http://docs.lib.purdue.edu/iracc%0Ahttp://docs.lib.purdue.edu/iracc/953 | es_ES |
dc.description.references | Østergaard, P. A., & Andersen, A. N. (2018). Economic feasibility of booster heat pumps in heat pump-based district heating systems. Energy, 155, 921-929. doi:10.1016/j.energy.2018.05.076 | es_ES |
dc.description.references | Fischer, D., Toral, T. R., Lindberg, K. B., Wille-Haussmann, B., & Madani, H. (2014). Investigation of Thermal Storage Operation Strategies with Heat Pumps in German Multi Family Houses. Energy Procedia, 58, 137-144. doi:10.1016/j.egypro.2014.10.420 | es_ES |
dc.description.references | Han, Y. M., Wang, R. Z., & Dai, Y. J. (2009). Thermal stratification within the water tank. Renewable and Sustainable Energy Reviews, 13(5), 1014-1026. doi:10.1016/j.rser.2008.03.001 | es_ES |
dc.description.references | Haller, M. Y., Haberl, R., Mojic, I., & Frank, E. (2014). Hydraulic Integration and Control of Heat Pump and Combi-storage: Same Components, Big Differences. Energy Procedia, 48, 571-580. doi:10.1016/j.egypro.2014.02.067 | es_ES |
dc.description.references | Liu, F., Zhu, W., Cai, Y., Groll, E. A., Ren, J., & Lei, Y. (2017). Experimental performance study on a dual-mode CO2 heat pump system with thermal storage. Applied Thermal Engineering, 115, 393-405. doi:10.1016/j.applthermaleng.2016.12.095 | es_ES |
dc.description.references | Castell, A., Medrano, M., Solé, C., & Cabeza, L. F. (2010). Dimensionless numbers used to characterize stratification in water tanks for discharging at low flow rates. Renewable Energy, 35(10), 2192-2199. doi:10.1016/j.renene.2010.03.020 | es_ES |
dc.description.references | Armstrong, P., Ager, D., Thompson, I., & McCulloch, M. (2014). Domestic hot water storage: Balancing thermal and sanitary performance. Energy Policy, 68, 334-339. doi:10.1016/j.enpol.2014.01.012 | es_ES |
dc.description.references | Hervás-Blasco, E., Navarro-Peris, E., & Corberán, J. M. (2019). Optimal design and operation of a central domestic hot water heat pump system for a group of dwellings employing low temperature waste heat as a source. Energy, 188, 115979. doi:10.1016/j.energy.2019.115979 | es_ES |
dc.description.references | Next Generation of Heat Pumps Working with Natural Fluids (NxtHPG) http://www.nxthpg.eu/ | es_ES |
dc.description.references | Transient Systems Simulation Homepage http://www.trnsys.com | es_ES |
dc.description.references | Masip, X., Cazorla-Marín, A., Montagud-Montalvá, C., Marchante, J., Barceló, F., & Corberán, J. M. (2019). Energy and techno-economic assessment of the effect of the coupling between an air source heat pump and the storage tank for sanitary hot water production. Applied Thermal Engineering, 159, 113853. doi:10.1016/j.applthermaleng.2019.113853 | es_ES |