- -

Large scale phenotyping and molecular analysis in a germplasm collection of rocket salad (Eruca vesicaria) reveal a differentiation of the gene pool by geographical origin

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Large scale phenotyping and molecular analysis in a germplasm collection of rocket salad (Eruca vesicaria) reveal a differentiation of the gene pool by geographical origin

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Guijarro-Real, Carla es_ES
dc.contributor.author Navarro, Alejandra es_ES
dc.contributor.author Esposito, Salvatore es_ES
dc.contributor.author Festa, Giovanna es_ES
dc.contributor.author Macellaro, Rosaria es_ES
dc.contributor.author Di Cesare, Carlo es_ES
dc.contributor.author Fita, Ana es_ES
dc.contributor.author Rodríguez Burruezo, Adrián es_ES
dc.contributor.author Cardi, Teodoro es_ES
dc.contributor.author Prohens Tomás, Jaime es_ES
dc.contributor.author Tripodi, Pasquale es_ES
dc.date.accessioned 2021-06-09T03:31:07Z
dc.date.available 2021-06-09T03:31:07Z
dc.date.issued 2020-03-04 es_ES
dc.identifier.issn 0014-2336 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167594
dc.description.abstract [EN] Cultivated rocket (Eruca vesicaria) is a leafy vegetable highly appreciated for its healthpromoting virtues and consumed both raw and cooked as ready-to-use vegetable. Despite Eruca being cultivated worldwide, only a few cultivars are available and limited breeding activities have been carried out so far. Therefore, the genetic resources available represent an unexploited potential source of variation for breeding. In the present study, 155 E. vesicaria accessions from 30 countries across Europe, Asia, Africa, and America have been characterized for 54 qualitative and quantitative morphological and quality traits. Conventional descriptors and automated tools for the determination of the quality, morphology, and colour of leaves have been used. Genetic diversity was assessed using 15 inter simple sequence repeat and simple sequence repeat markers. A high level of diversity was evidenced in the collection. Significant differences were found in most of the traits with the exception of five pseudo-qualitative descriptors. The first and second dimensions of the principal components analysis with phenotypic traits accounted for 25.69% of total variation showing a stratification of the genotypes according to the European and Asian origins. In total, 75% of the variation was contained in the first 15 components having eigenvalues higher than 1.0. Also, the population structure divided the collection into two main clusters separating European genotypes from the rest. Furthermore, hierarchical cluster analysis confirmed a geographical separation, grouping the accessions into three major clusters, which were differentiated by plant architecture, leaf and flower colour, leaf water status, leaf blade shape and hairiness of the leaves and stem. Our approach has broadened the knowledge of the diversity within the Eruca gene pool, thus contributing to identify sources of variation and to select the best candidates for cultivated rocket breeding programs, as well as to determine the genetic basis of plant and leaf traits in future genome-wide association studies. es_ES
dc.description.sponsorship The work was supported by 'RGV-FAO' project funded by the Italian Ministry of Agriculture, Food and Forestry. C. Guijarro-Real thanks the Ministerio de Educacion, Cultura y Deporte of Spain (MECD) for its financial support by means of a predoctoral FPU Grant (FPU14/06798), and for the specific grant for mobility (EST17/00354) from the same Organization. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Euphytica es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cultivated rocket es_ES
dc.subject Eruca es_ES
dc.subject Genetic resources es_ES
dc.subject Morphological descriptors es_ES
dc.subject Phenotyping es_ES
dc.subject Leaf imaging es_ES
dc.subject Genetic diversity es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.subject.classification GENETICA es_ES
dc.title Large scale phenotyping and molecular analysis in a germplasm collection of rocket salad (Eruca vesicaria) reveal a differentiation of the gene pool by geographical origin es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10681-020-02586-x es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU14%2F06798/ES/FPU14%2F06798/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//EST17%2F00354/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Guijarro-Real, C.; Navarro, A.; Esposito, S.; Festa, G.; Macellaro, R.; Di Cesare, C.; Fita, A.... (2020). Large scale phenotyping and molecular analysis in a germplasm collection of rocket salad (Eruca vesicaria) reveal a differentiation of the gene pool by geographical origin. Euphytica. 216(3):1-20. https://doi.org/10.1007/s10681-020-02586-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10681-020-02586-x es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 216 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\406449 es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Ministero delle politiche agricole alimentari, forestali e del turismo, Italia es_ES
dc.description.references Andrey P, Maurin Y (2005) Free-D: an integrated environment for three-dimensional reconstruction from serial sections. J Neurosci Methods 145:233–244 es_ES
dc.description.references Awada L, Phillips PWB, Smyth SJ (2018) The adoption of automated phenotyping by plant breeders. Euphytica 214:148. https://doi.org/10.1007/s10681-018-2226-z es_ES
dc.description.references Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15(3):413–428 es_ES
dc.description.references Bell L, Wagstaff C (2014) Glucosinolates, myrosinase hydrolysis products, and flavonols found in rocket (Eruca sativa and Diplotaxis tenuifolia). J Agric Food Chem 62:4481–4492 es_ES
dc.description.references Bell L, Oruna Concha MJ, Wagstaff C (2015) Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC-MS: highlighting the potential for improving nutritional value of rocket crops. Food Chem 172:852–861 es_ES
dc.description.references Bell L, Methven L, Wagstaff C (2017) The influence of phytochemical composition and resulting sensory attributes on preference for salad rocket (Eruca sativa) accessions by consumers of varying TAS2R38 diplotype. Food Chem 222:6–17 es_ES
dc.description.references Bennett RN, Mellon FA, Botting NP, Eagles J, Rosa EAS, Williamson G (2002) Identification of the major glucosinolate (4-mercaptobutyl glucosinolate) in leaves of Eruca sativa L. (salad rocket). Phytochemistry 61:25–30 es_ES
dc.description.references Bozokalfa MK, Eşiyok D, Ilbi H, Kaygisiz AT (2010) Estimates of genetic variability and association studies in quantitative plant traits of Eruca spp. landraces. Genetika 42(3):501–512 es_ES
dc.description.references Bozokalfa MK, Eşiyok D, Ilbi H, Kavak S, Kaygisiz AT (2011) Evaluation of phenotypic diversity and geographical variation of cultivated (Eruca sativa L.) and wild (Diplotaxis tenuifolia L.) rocket plant. Plant Genet Resour C 9:454–563 es_ES
dc.description.references CBI Centre for the Promotion of Imports from developing countries (2019) https://www.cbi.eu/market-information/fresh-fruit-vegetables/fresh-herbs/europe/. Accessed 21 Sept 2019 es_ES
dc.description.references Cheruiyot EK, Mumera LM, Ngetich WK, Hassanali A, Wachira F (2007) Polyhenols as potential indicators for osmotic tolerance in tea (Camellia sinensis L.). Biosci Biotechnol Biochem 71:2190–2197. https://doi.org/10.1271/bbb.70156 es_ES
dc.description.references Curtin F, Schulz P (1998) Multiple correlations and Bonferroni’s correction. Biol Psychiatr 44:775–777 es_ES
dc.description.references D’Antuono LF, Elementi S, Neri R (2008) Glucosinolates in Diplotaxis and Eruca leaves: diversity, taxonomic relations and applied aspects. Phytochemistry 69:187–199 es_ES
dc.description.references Daayf F, El Hadrami A, El-Bebany AE, Henriquez MA, Yao Z, Derksen H, El-Hadrami I, Adam LR (2012) Phenolic compounds in plant defense and pathogen counter-defense mechanisms. Rec Adv Polyphen Res 3:191–208 es_ES
dc.description.references Dalin P, Agren J, Björkman C, Huttumen P, Kärkkäinen K (2008) Leaf trichome formation and plant resistance to herbivory. In: Schaller A (ed) Induced plant resistance to herbivory. Springer, Berlin, pp 89–105 es_ES
dc.description.references Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361 es_ES
dc.description.references Egea-Gilabert C, Fernandez JA, Migliaro D, Martinez Sanchez JJ, Vicente MJ (2009) Genetic variability in wild vs. cultivated Eruca vesicaria populations as assessed by morphological, agronomical and molecular analyses. Sci Hortic 121:260–266 es_ES
dc.description.references Fine PVA (2015) Ecological and evolutionary drivers of geographic variation in species diversity. Annu Rev Ecol Evol Syst 46:369–392. https://doi.org/10.1146/annurev-ecolsys-112414-054102 es_ES
dc.description.references Gilardi G, Chen G, Garibaldi A, Zhiping C, Gullino ML (2007) Resistance of different rocket cultivars to wilt caused by strains of Fusarium oxysporum under artificial inoculation conditions. J Plant Pathol 89:113–117 es_ES
dc.description.references Gómez-Campo C (2003) Morphological characterization of Eruca vesicaria (Cruciferae) germplasm. Bocconea 16:615–624 es_ES
dc.description.references Guijarro-Real C, Prohens J, Rodriguez-Burruezo A, Adalid-Martínez AM, López-Gresa MP, Fita A (2019) Wild edible fool’s watercress: a potential crop with high nutraceutical properties. PeerJ 7:e6296 es_ES
dc.description.references Hall MKD, Jobling JJ, Rogers GS (2012) Some perspectives on rocket as a vegetable crop: a review. Veg Crop Res Bull 76:21–41 es_ES
dc.description.references Hanldey R, Ekbom B, Ågren J (2005) Variation in trichome density and resistance against a specialist insect herbivore in natural populations of Arabidopsis thaliana. Ecol Entomol 30:284–292 es_ES
dc.description.references Hauser MT (2014) Molecular basis of natural variation and environmental control of trichome patterning. Front Plant Sci 5:320 es_ES
dc.description.references Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55:224–236 es_ES
dc.description.references IPGRI (1999) Descriptors for rocket (Eruca spp.). International Plant Genetic Resources Institute, Rome es_ES
dc.description.references Lenzi A, Tesi R (2000) Effect of some cultural factors on nitrate accumulation in rocket [Diplotaxis tenuifolia (L.) D.C. – Eruca sativa Mill.]. Riv Agronomia 34(4):419–424 es_ES
dc.description.references Mantel NA (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220 es_ES
dc.description.references Meyer RS, Purugganan MD (2013) Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet 14:840–852 es_ES
dc.description.references Ninfali P, Mea G, Giorgini S, Rocchi M, Bacchiocca M (2005) Antioxidant capacity of vegetables spices and dressings relevant to nutrition. Br J Nutr 93:257–266 es_ES
dc.description.references Padulosi S, Pignone D (1996) Rocket: a mediterranean crop for the world. Report of a workshop. IPGRI International Plant Genetic Resources Institute, Bioversity International, Rome, p 101 es_ES
dc.description.references Pane C, Sigillo L, Caputo M, Serratore G, Zaccardelli M, Tripodi P (2017) Response of rocket salad germplasm (Eruca and Diplotaxis spp.) to major pathogens causing damping-off, wilting and leaf spot diseases. Arch Phytopathol Plant Protect 50:167–177 es_ES
dc.description.references Pariyar S, Eichert T, Goldbach HE, Hunsche M, Burkhardt J (2013) The exclusion of ambient aerosols changes the water relations of sunflower (Helianthus annuus) and bean (Vicia vaba) plants. Environ Exp Bot 88:43–52 es_ES
dc.description.references Pasini F, Verardo V, Caboni MF, D’Antuono LF (2012) Determination of glucosinolates and phenolic compounds in rocket salad by HPLC-DAD−MS: evaluation of Eruca sativa Mill. and Diplotaxis tenuifolia L. genetic resources. Food Chem 133:1025–1033 es_ES
dc.description.references Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The utility of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238 es_ES
dc.description.references Prevost A, Wilkinson MJ (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet 98:107–112 es_ES
dc.description.references Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959 es_ES
dc.description.references Singleton VL, Rossi JA Jr (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Viticult 16:144–158 es_ES
dc.description.references Taiz L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Associates Inc., Sunderland es_ES
dc.description.references Tanentzap FM, Stempel A, Ryser P (2015) Reliability of leaf relative water content (RWC) measurements after storage: consequences for in situ measurements. Botany 93:535–541 es_ES
dc.description.references Taranto F, Francese G, Di Dato F, D’Alessandro A, Greco B, Onofaro Sanajà V, Pentangelo A, Mennella G, Tripodi P (2016) Leaf metabolic, genetic, and morphophysiological profiles of cultivated and wild rocket salad (Eruca and Diplotaxis spp.). J Agric Food Chem 64:5824–5836 es_ES
dc.description.references Thakur AK, Singh KH, Singh L, Nanjundan J, Khan YJ, Singh D (2018) SSR marker variations in Brassica species provide insight into the origin and evolution of Brassica amphidiploids. Hereditas 155:6. https://doi.org/10.1186/s41065-017-0041-5 es_ES
dc.description.references The Plant List (2019). http://www.theplantlist.org/tpl1.1/search?q=Eruca. Accessed 21 Sept 2019 es_ES
dc.description.references Tripodi P, Francese G, Mennella G (2017) Rocket salad: crop description, bioactive compounds and breeding perspectives. Adv Hortic Sci. https://doi.org/10.13128/ahs-21087 es_ES
dc.description.references Vavilov NI (1926) Centers of origin of cultivated plants. Bull Appl Bot Genet Plant Breed 16:1–248 es_ES
dc.description.references Wagner GJ (1991) Secreting glandular trichomes: more than just hairs. Plant Physiol 96:675–679 es_ES
dc.description.references Warwick SI, Gukel RK, Gomez-Campo C, James T (2007) Genetic variation in Eruca vesicaria (L.) Cav. Plant Genet Resour C 5:142–153 es_ES
dc.subject.ods 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem