- -

Screening cultivated eggplant and wild relatives for resistance to sweetpotato whitefly (Bemisia tabaci) and to two-spotted spider mite (Tetranychus urticae)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Screening cultivated eggplant and wild relatives for resistance to sweetpotato whitefly (Bemisia tabaci) and to two-spotted spider mite (Tetranychus urticae)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Taher, Dalia es_ES
dc.contributor.author Ramasamy, Srinivasan es_ES
dc.contributor.author Prohens Tomás, Jaime es_ES
dc.contributor.author Rakha, Mohamed es_ES
dc.date.accessioned 2021-06-09T03:31:22Z
dc.date.available 2021-06-09T03:31:22Z
dc.date.issued 2020-09-14 es_ES
dc.identifier.issn 0014-2336 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167595
dc.description.abstract [EN] Whiteflies and spider mites are amongst the most harmful eggplant (Solanum melongena) pests. Considering the need for reduction of chemical applications for whitefly and spider mite control, the exploitation of wild relatives of eggplant as sources of pest resistances represents an important strategy in order to improve cultivated eggplant. The objectives of this study were to evaluate 15 accessions from 11 species of eggplant wild relatives together with sevenS. melongenaaccessions for resistance to sweet potato whitefly (Bemisia tabaci) and to two-spotted spider mite (Tetranychus urticae). Resistance to whitefly was evaluated based on number of eggs, nymph, puparium and whitefly adults in a choice bioassay, while for two-spotted spider mite it was based on leaf damage scores in the choice and no-choice bioassays. The results revealed significantly (P < 0.05) different levels of resistance to the two pests among the accessions evaluated. Considering all screening parameters in the whitefly choice bioassay, the highest levels of resistance in wild eggplant relatives were detected inSolanum dasyphyllum(DAS1) andS. pyracanthos(PYR1), although one of the cultivatedS. melongena(MEL2) accessions also displayed similar resistance levels. In addition,S. campylacanthum(CAM8) andS. tomentosumTOM1 were also resistant to whitefly based on numbers of puparium and adult whiteflies. Two accessions ofS. sisymbriifolium(SIS1 and SIS2) exhibited strong resistance to two-spotted spider mite based on the choice and no-choice bioassays. High levels of spider mite resistance were also detected in the no-choice assay inS. dasyphyllum(DAS1) andS. torvum(TOR2) accessions. These resistant accessions can be used in pre-breeding program aiming to breed pest-resistant cultivars in cultivated eggplant. Moreover, to our knowledge, this study represents the first report on potential sources of resistance to whitefly and two-spotted spider mite in wild relatives of eggplant. es_ES
dc.description.sponsorship This work was undertaken as part of the initiative ``Adapting Agriculture to Climate Change: Collecting, Protecting and Preparing Crop Wild Relatives'' which is supported by the Government of Norway. The project is managed by the Global Crop Diversity Trust with the Millennium Seed Bank of the Royal Botanic Gardens, Kew UK and implemented in partnership with national and international genebanks and plant breeding institutes around the world. For further information, go to the project website: http://www.cwrdiversity.org/.This work has also been funded in part by World Vegetable Center core funds from Republic of China (Taiwan), UK aid from the UK Government, United States Agency for International Development (USAID), Australian Centre for International Agricultural Research (ACIAR), Germany, Thailand, Philippines, Korea, and Japan. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Euphytica es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Antibiosis es_ES
dc.subject Antixenosis es_ES
dc.subject Solanum melongena es_ES
dc.subject Two-spotted spider mite resistance es_ES
dc.subject Wild relatives es_ES
dc.subject Whitefly resistance es_ES
dc.subject.classification GENETICA es_ES
dc.title Screening cultivated eggplant and wild relatives for resistance to sweetpotato whitefly (Bemisia tabaci) and to two-spotted spider mite (Tetranychus urticae) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10681-020-02692-w es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Taher, D.; Ramasamy, S.; Prohens Tomás, J.; Rakha, M. (2020). Screening cultivated eggplant and wild relatives for resistance to sweetpotato whitefly (Bemisia tabaci) and to two-spotted spider mite (Tetranychus urticae). Euphytica. 216(10):1-13. https://doi.org/10.1007/s10681-020-02692-w es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10681-020-02692-w es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 216 es_ES
dc.description.issue 10 es_ES
dc.relation.pasarela S\431047 es_ES
dc.contributor.funder Government of Norway es_ES
dc.contributor.funder World Vegetable Center, Taiwan es_ES
dc.contributor.funder Crop Trust es_ES
dc.contributor.funder United States Agency for International Development es_ES
dc.contributor.funder Australian Centre for International Agricultural Research es_ES
dc.description.references Abudulai M, Shepard BM, Mitchell PL (2001) Parasitism and predation on eggs of Leptoglossus phyllopus (L.) (Hemiptera: Coreidae) in cowpea: Impact of endosulfan sprays. J Agric Urban Entomol 18:105–115 es_ES
dc.description.references Agut B, Gamir J, Jacas JA, Hurtado M, Flors V (2014) Different metabolic and genetic responses in citrus may explain relative susceptibility to Tetranychus urticae. Pest Manag Sci 70:1728–1741 es_ES
dc.description.references Agut B, Pastor V, Jaques JA, Flors V (2018) Can plant defence mechanisms provide new approaches for the sustainable control of the two-spotted spider mite Tetranychus urticae? Int J Mol Sci 19:614 es_ES
dc.description.references Aliero AA, Afolayan AJ (2006) Antimicrobial activity of Solanum tomentosum. Afr J Biotechnol 5(4):369–372 es_ES
dc.description.references Asian Vegetable Research and Development Center (1999) AVRDC report. Shanhua, Taiwan, pp 32–36 es_ES
dc.description.references Baldin ELL, Beneduzzi RA (2010) Characterization of antibiosis and antixenosis to the whitefly silverleaf Bemisia tabaci B biotype (Hemiptera: Aleyrodidae) in several squash varieties. J Pest Sci 83(3):221–227 es_ES
dc.description.references Barchi L, Acquadro A, Alonso D, Aprea G, Bassolino L, Demurtas O, Ferrante P, Gramazio P, Mini P, Portis E, Scaglione D, Toppino L, Vilanova S, Díez MJ, Rotino GL, Lanteri S, Prohens J, Giuliano G (2019) Single Primer Enrichment Technology (SPET) for high-throughput genotyping in tomato and eggplant germplasm. Front Plant Sci 10:1005 es_ES
dc.description.references Bentz JA, Reeves J, Barbosa P, Francis B (1995) Within-plant variation in nitrogen and sugar content of poinsettia and its effects on the oviposition pattern, survival, and development of Bemisia argentifolii (Homoptera: Aleyrodidae). Environ Entomol 24:271–277 es_ES
dc.description.references Blackmer JL, Byrne DN (1999) Changes in amino acids in Cucumis melo in relation to life-history traits and flight propensity of Bemisia tabaci. Entomol Exp 93:29–40 es_ES
dc.description.references Berlinger MJ, Magal Z, Benzioni A (1983) The importance of pH in food selection by the tobacco whitefly, Bemisia tabaci. Phytoparasitica 11:151–160 es_ES
dc.description.references Bleeker PM, Diergaarde PJ, Ament K, Guerra J, Weidner M, Schutz S, de Both MT, Haring MA, Schuurink RC (2009) The role of specific tomato volatiles in tomato-whitefly interaction. Plant Physiol 151(2):925–993 es_ES
dc.description.references Bleeker PM, Mirabellaa R, Diergaardeb PJ, VanDoornb A, Tissierc A, Kantd MR, Prinsb M, de Vosb M, Haringa MA, Schuurinka RC (2012) Improved herbivore resistance in cultivated tomato with the sesquiterpene biosynthetic pathway from a wild relative. Proc Natl Acad Sci USA 109(49):20124–20129 es_ES
dc.description.references Bletsos FA, Olympios CM (2008) Rootstocks and grafting of tomatoes, peppers and eggplants for soil-borne disease resistance, improved yield and quality. Eur J Plant Sci Biotechnol 2:62–73 es_ES
dc.description.references Bletsos FA, Thanassoulopoulos CC, Roupakias DG (2003) Effect of grafting on growth, yield and verticillium wilt of eggplant. HortScience 38:183–186 es_ES
dc.description.references Bostanian NJ, Trudeau M, Lasnier J (2003) Management of the two-spotted spider mite, Tetranychus urticae [Acari: Tetranychidae] in eggplant fields. Phytoprotection 84:1–8 es_ES
dc.description.references Bubici G, Cirulli M (2008) Integrated management of Verticillium wilt of tomato. In: Ciancio A, Mukerji KG (eds) Integrated management of diseases caused by fungi, phytoplasma and bacteria. Springer, Berlin, pp 225–242 es_ES
dc.description.references Bukenya ZR, Carasco JF (1994) Biosystematic study of Solanum macrocarpon-S. dasyphyllum complex in Uganda and relations with S. linnaeanum. J East Afr Agric Fores 59:187–204 es_ES
dc.description.references Cardoza YJ, McAuslane HJ, Webb SE (2000) Effect of leaf age and silverleaf symptoms on oviposition site selection and development of Bemisia argentifolii (Homoptera: Aleyrodidae) on zucchini. Environ Entomol 29:220–225 es_ES
dc.description.references Chelliah S, Srinivasan K (1983) Resistance in bhindi, brínjal and tomato to major ínsect and mite pests. In: Proceedings of the national seminar on breeding crop plants for Resistance to pest and disease, Coimbatore, India, Tamil Nadu Agricultural University, 25–27th May, pp 47– 49 es_ES
dc.description.references Choudhary B, Gaur K (2013) The Development and regulation of Bt brinjal in India (Eggplant/Aubergine). ISAAA Brief No. 38. ISAAA, Ithaca es_ES
dc.description.references Culliney TW (2014) Crop losses to arthropods. In: PimenTel D, Peshin R (eds) Integrated pest management. Pesticide Problems. Springer, Dordrecht, pp 201–226 es_ES
dc.description.references Daunay MC, Hazra P (2012) Eggplant. In: Peter KV, Hazra P (eds) Handbook of vegetables. Studium Press, Houston, pp 257–322 es_ES
dc.description.references Daunay MC (2008) Eggplant. In: Prohens J, Nuez F (eds) Vegetables II: handbook of plant breeding. Springer, New York, pp 163–220 es_ES
dc.description.references Del Prado-Lu JL (2015) Insecticide residues in soil, water, and eggplant fruits and farmers’ health effects due to exposure to pesticides. Environ Health Prev Med 20(1):53–62 es_ES
dc.description.references Dı ´ez MJ, Nuez F (2008) Tomato. In: Prohens J, Nuez F (eds) Vegetables II: fabaceae, liliaceae, solanaceae, and umbelliferae. Springer, New York, pp 249–323 es_ES
dc.description.references FAOSTAT (2014) Agricultural statistics database. Food and Agriculture Organization, 2014 Rome. http://faostat.fao.org es_ES
dc.description.references FAOSTAT (2017) Agricultural statistics database. Food and Agriculture Organization, 2017 Rome. http://faostat.fao.org es_ES
dc.description.references Firdaus S, van Heusden A, Hidayati N, Supena ED, Visser RG, Vosman B (2012) Resistance to Bemisia tabaci in tomato wild relatives. Euphytica 187:31–45 es_ES
dc.description.references Frary A, Doganlar S, Daunay MC (2006) Eggplant. In: Kole C (ed) Vegetables II: genome mapping and molecular breeding in plants. Springer, Heidelberg, pp 287–313 es_ES
dc.description.references Frary A, Doganlar S, Daunay MC, Tanksley SD (2003) QTL analysis of morphological traits in eggplant and implications for conservation of gene function during evolution of solanaceous species. Theor Appl Genet 107:359–370 es_ES
dc.description.references García-Forteaa E, Gramazioa P, Vilanovaa S, Fitaa A, Manginoa G, Villanuevaa G, Arronesa A, Knappb S, Prohensa J, Plaza M (2019) First successful backcrossing towards eggplant (Solanum melongena) of a New World species, the silverleaf nightshade (S. elaeagnifolium), and characterization of interspecific hybrids and backcrosses. Sci Hortic 246:563–573 es_ES
dc.description.references Ghidiu GM, Hitchner EM, Fburk JE (2006) Goldfleck damage to tomato fruit caused by feeding of Frankliniella occidentalis (Thysanoptera: Thripidae). Florida Entomol 89:279–281 es_ES
dc.description.references Gramazio P, Prohens J, Plazas M, Mangino G, Herraiz FJ, Vilanova S (2017) Development and genetic characterization of advanced backcross materials and an introgression line population of Solanum incanum in a S. melongena background. Front Plant Sci 8:1477 es_ES
dc.description.references Harlan JR, De Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517 es_ES
dc.description.references Hautea DM, Taylo LD, Masanga APL, Sison MLJ, Narciso JO, Quilloy RB (2016) Field performance of Bt eggplants (Solanum melongena L.) in the Philippines: Cry1ac expression and control of the eggplant fruit and shoot borer (Leucinodes orbonalis Guenée). PLOS ONE 11(6):1–22 es_ES
dc.description.references Helps JC, Paveley ND, van den Boscha F (2017) Identifying circumstances under which high insecticide dose increases or decreases resistance selection. J Theor Biol 428:153–167 es_ES
dc.description.references Hogenhout SA, Ammar ED, Whitfield AE, Redinbaugh MG (2008) Insect vector interactions with persistently transmitted viruses. Annu Rev Phytopathol 46:327–359 es_ES
dc.description.references Im K, Lee JY, Byeon H, Hwang KW, Kang W, Whang WK, Min H (2016) In Vitro antioxidative and anti-inflammatory activities of the ethanol extract of eggplant (Solanum melongena) stalks in macrophage RAW 264.7 cells. Food Agr Immunol 27:758–771 es_ES
dc.description.references Jindal V, Dhaliwal GS, Dhawan AK (2008) Mechanisms of resistance in cotton to whitefly Bemisia tabaci (Homoptera: Aleyrodidae): antibiosis. Int J Trop Insect Sci 27:216–222 es_ES
dc.description.references Kashyap V, Vinod Kumar S, Collonnier C, Fusari F, Haicour R, Rotino G, Sihachakr D, Rajam M (2003) Biotechnology of eggplant. Sci Hortic 97:1–25 es_ES
dc.description.references Khan R, Rao GR, Baksh S (1978) Cytogenetics of Solanum integrifolium and its possible use in eggplant breeding. Indian J Genet Plant Breed 38(3):343–347 es_ES
dc.description.references Khanamani M, Fathipour Y, Hajiqanbar H, Sedaratian A (2014) Two-spotted spider mite reared on resistant eggplant affects consumption rate and life table parameters of its predator,Typhlodromus bagdasarjani (Acari: Phytoseiidae). Exp Appl Acarol 63:241–252 es_ES
dc.description.references Kouassi B, Prohens J, Gramazio P, Kouassi AB, Vilanova S, Galán-Ávila A, Herraiz FJ, Kouassi A, Seguí-Simarro JM, Plazas M (2016) Development of backcross generations and new interspecific hybrid combinations for introgression breeding in eggplant (Solanum melongena). Sci Hort 213:199–207 es_ES
dc.description.references Leimu R, Riipi M, Stærk D (2005) Food preference and performance of the larvae of a specialist herbivore: variation among and within host-plant populations. Acta Oecologia 28:325–330 es_ES
dc.description.references Liu TX, Stansly PA (1998) Life history of Bemisia argentifolii (Homoptera: Aleyrodidae) on Hibiscus rosasinensis (Malvaceae). Fla Entomol 81:437–445 es_ES
dc.description.references Liu J, Zheng Z, Zhou X, Feng C, Zhuang Y (2015) Improving the resistance of eggplant (Solanum melongena) to verticillium wilt using wild species Solanum linnaeanum. Euphytica 201:463–469 es_ES
dc.description.references McAuslane HJ (1996) Influence of leaf pubescence on ovipositional preference of Bemisia argentifolii (Homoptera: Aleyrodidae) on soybean. Environ Entomol 25(4):834–884 es_ES
dc.description.references Medakker A, Vijayaraghavan V (2007) Successful commercialization of insect-resistant eggplant by a public–private partnership: reaching and benefiting resource-poor farmers. In: Krattiger A, Mahoney RT, Nelsen L, Thomson JA, Bennett AB, Satyanarayana K, Graff GD, Fernandez C, Kowalski SP (eds) Intellectual Property Management in Health and Agricultural Innovation: A Handbook of Best Practices. MIHR, Oxford es_ES
dc.description.references Meyer RS, Karol KG, Little DP, Nee MH, Litt A (2012) Phylogeographic relationships among Asian eggplants and new perspectives on eggplant domestication. Mol Phylogenet Evol 63:685–701 es_ES
dc.description.references Meyer RS, Whitaker BD, Little DP, Wu SB, Kennelly EJ, Long CL, Litt A (2015) Parallel reductions in phenolic constituents resulting from the domestication of eggplant. Phytochemistry 115:194–206 es_ES
dc.description.references Muigai SG, Bassett MJ, Schuster DJ, Scott JW (2003) Greenhouse and field screening of wild Lycopersicon germplasm for resistance to the whitefly Bemisia argentifolii. Phytoparasitica 31(1):27–38 es_ES
dc.description.references Naegele RP, Boyle S, Quesada-Ocampo LM, Hausbeck MK (2014) Genetic diversity, population structure, and resistance to Phytophthora capsici of a worldwide collection of eggplant germplasm. PLoS ONE 9:e95930 es_ES
dc.description.references Oriani MAD, Vendramim JD, Vasconcelos CJ (2011) No-choice ovipositional non preference of Bemisia tabaci (Gennadius) B biotype on tomato genotypes. Sci Agric 68:147–115 es_ES
dc.description.references Oriani MAG, Vendramim JD (2010) Influence of trichomes on attractiveness and ovipositional preference of Bemisia tabaci (Genn.) B biotype (Hemiptera: Aleyrodidae) on tomato genotypes. Neotrop Entomol 39:1002–1007 es_ES
dc.description.references Plazas M, Andújar I, Vilanova S, Gramazio P, Herraiz FJ, Andújar I (2014b) Conventional and phenomics characterization provides insight into the diversity and relationships of hypervariable scarlet (Solanum aethiopicum L.) and gboma (S. macrocarpon L.) eggplant complexes. Front Plant Sci 5:318 es_ES
dc.description.references Plazas M, Vilanova S, Gramazio P, Rodríguez-Burruezo A, Fita A, Herraiz FJ, Ranil R, Fonseka R, Niran L, Fonseka H et al (2016) Interspecific hybridization between eggplant and wild relatives from different genepools. J Am Soc Hort Sci 141:34–44 es_ES
dc.description.references Rakha M, Hanson P, Ramasamy S (2017a) Identification of resistance to Bemisia tabaci (Genn.) in closely related wild relatives of cultivated tomato based on trichome type analysis and choice and no-choice assays. Genet Resour Crop Evol 64:247–260. https://doi.org/10.1007/s10722-015-0347-y es_ES
dc.description.references Rakha M, Bouba N, Ramasamy S, Regnard J, Hanson P (2017b) Evaluation of wild tomato accessions (Solanum spp.) for resistance to two-spotted spider mite (Tetranychus urticae Koch) based on trichome type and acylsugar content. Genet Resour Crop Evol 64:1011–1022. https://doi.org/10.1007/s10722-016-0421-0 es_ES
dc.description.references Ranil RH, Prohens J, Aubriot X, Niran HM, Plazas M, Fonseka RM, Gramazio P, Knapp S (2017) Solanum insanum L. (subgenus Leptostemonum Bitter, Solanaceae), the neglected wild progenitor of eggplant (S. melongena L.): a review of taxonomy, characteristics and uses aimed at its enhancement for improved eggplant breeding. Genet Resour Crop Evol es_ES
dc.description.references Rotino GL, Perri E, Acciarri N, Sunseri F, Arpaia S (1997) Development of eggplant varietal resistance to insects and diseases via plant breeding. Adv Hort Sci 11:193–201 es_ES
dc.description.references Rotino GL, Sala T, Toppino L (2014) Eggplant. In: Pratap A, Kumar J (eds) Alien gene transfer in crop plants vol, 2. Springer, New York, pp 381–409 es_ES
dc.description.references Schalk JM, Stoner AK, Webb RE, Winters HF (1975) Resistance in eggplant, Solanum melongena L. and nontuber bearing Solanum species to carmine spider mite. J Am Soc Hortic Sci 100:479–481 es_ES
dc.description.references Schippers RR (2000) African indigenous vegetables: An overview of the cultivated species. Proceedings of the Natural Resources Institute/ACP-EU Technical Centre for Agricultural and Rural Cooperation, Chatham, UK es_ES
dc.description.references Schuster DJ, Stansly PA, Polston JE (1996) Expressions of plant damage by Bemisia. In: Gerling D, Mayer RT (eds) Bemisia (1995) Taxonomy, biology, damage control and management. Intercept Andover, Hants, pp 153–165 es_ES
dc.description.references Sippell DW, Bindra OS, Khalifa H (1987) Resistance to whitefly (Bemisia tabaci) in cotton (Gossypium hirsutum) in the Sudan. Crop Protect 6(3):171–178 es_ES
dc.description.references Smith CM, Clement SL (2012) Molecular bases of plant resistance to arthropods. Annu Rev Entomol 57:309–328 es_ES
dc.description.references Smith CM (2005) Plant resistance to arthropods. Molecular and conventional approaches. Springer, Dordrecht es_ES
dc.description.references Snyder JC, Simmons AM, Thacker RR (1998) Attractancy and ovipositional response of adult Bemisia argentifolii (Homoptera: Aleyrodidae) to type IV trichome density on leaves of Lycopersicon hirsutum grown in three day-length regimes. J Entomol Sci 33(3):270–281 es_ES
dc.description.references Soria C, Lopez-Sese AI, Gomez-Guillamon ML (1999) Resistance of Cucumis melo against Bemisia tabaci (Homoptera: Aleyrodidae). Environ Entomol 28:31–835 es_ES
dc.description.references Srinivasan R (2009) Insect and mite pests on eggplant: a field guide for identification and management. AVRDC—The World Vegetable Center, Shanhua, Taiwan. AVRDC Publication No. 09-729. 64 p es_ES
dc.description.references Syfert M, Castañeda‐Álvarez NP, Khoury C, Särkinen T, Sosa CC, Achicanoy HA, Bernau V, Prohens J, Daunay MC, Knapp S (2016) Crop wild relatives of the brinjal eggplant (Solanum melongena): poorly represented in genebanks and many species at risk of extinction. Am J Bot 103:635–651 es_ES
dc.description.references Taher D, Solberg S, Prohens J, Chou Y, Rakha M, Wu T (2017) World vegetable center eggplant collection: origin, composition, seed dissemination and utilization in breeding. Front Plant Sci 8:1484 es_ES
dc.description.references Taher D, Rakha M, Ramasamy S, Solberg S, Schafleitner R (2019) Sources of resistance for two-spotted Spider Mite (Tetranychus urticae) in Scarlet (Solanum aethiopicum L.) and Gboma (S. macrocarpon L.) Eggplant Germplasms. HortScience 54(2):240–245 es_ES
dc.description.references Toppino L, Barchi L, Lo Scalzo R, Palazzolo E, Francese G, Fibiani M, D’Alessandro A, Papa V, Laudicina VA, Sabatino L et al (2016) Mapping quantitative trait loci affecting biochemical and morphological fruit properties in eggplant (Solanum melongena L.). Front Plant Sci 7:1–16 es_ES
dc.description.references Van Emden H (2002) Mechanisms of resistance: antibiosis, antixenosis, tolerance, nutrition. Encycl Pest Manag 1:483–486 es_ES
dc.description.references Van Lenteren JC, Noldus LPPJ (1990) Whitefly-plant relationships: behavioural and ecological aspects. In: Gerling D (ed) Whiteflies: their bionomics pest status and management. Intercept Ltd, Andover, pp 47–89 es_ES
dc.description.references Vorontsova MS, Knapp S (2012) A new species of Solanum (Solanaceae) from South Africa related to the cultivated eggplant. PhytoKeys 8:1–11 es_ES
dc.description.references Wang R, Wang JD, Che WN, Luo C (2017) First report of field resistance to cyantraniliprole, a new anthranilic diamide insecticide, on Bemisia tabaci MED in China. J Integr Agr 16(0):60345–60347 es_ES
dc.subject.ods 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem