- -

A computational psychiatry approach identifies how alpha-2A noradrenergic agonist Guanfacine affects feature-based reinforcement learning in the macaque

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A computational psychiatry approach identifies how alpha-2A noradrenergic agonist Guanfacine affects feature-based reinforcement learning in the macaque

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hassani, S. A. es_ES
dc.contributor.author Oemisch, M. es_ES
dc.contributor.author Balcarras, M. es_ES
dc.contributor.author Westendorff, S. es_ES
dc.contributor.author Ardid-Ramírez, Joan Salvador es_ES
dc.contributor.author van der Meer, M. A. es_ES
dc.contributor.author Tiesinga, P. es_ES
dc.contributor.author Womelsdorf, T. es_ES
dc.date.accessioned 2021-06-09T03:31:37Z
dc.date.available 2021-06-09T03:31:37Z
dc.date.issued 2017-01-16 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167599
dc.description.abstract [EN] Noradrenaline is believed to support cognitive flexibility through the alpha 2A noradrenergic receptor (a2A-NAR) acting in prefrontal cortex. Enhanced flexibility has been inferred from improved working memory with the a2A-NA agonist Guanfacine. But it has been unclear whether Guanfacine improves specific attention and learning mechanisms beyond working memory, and whether the drug effects can be formalized computationally to allow single subject predictions. We tested and confirmed these suggestions in a case study with a healthy nonhuman primate performing a feature-based reversal learning task evaluating performance using Bayesian and Reinforcement learning models. In an initial dose-testing phase we found a Guanfacine dose that increased performance accuracy, decreased distractibility and improved learning. In a second experimental phase using only that dose we examined the faster feature-based reversal learning with Guanfacine with single-subject computational modeling. Parameter estimation suggested that improved learning is not accounted for by varying a single reinforcement learning mechanism, but by changing the set of parameter values to higher learning rates and stronger suppression of non-chosen over chosen feature information. These findings provide an important starting point for developing nonhuman primate models to discern the synaptic mechanisms of attention and learning functions within the context of a computational neuropsychiatry framework. es_ES
dc.description.sponsorship This research was supported by grants from the Canadian Institutes of Health Research (CIHR), the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Ontario Ministry of Economic Development and Innovation (MEDI). We thank Dr. Hongying Wang for invaluable help with drug administration and animal care es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title A computational psychiatry approach identifies how alpha-2A noradrenergic agonist Guanfacine affects feature-based reinforcement learning in the macaque es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/srep40606 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.description.bibliographicCitation Hassani, SA.; Oemisch, M.; Balcarras, M.; Westendorff, S.; Ardid-Ramírez, JS.; Van Der Meer, MA.; Tiesinga, P.... (2017). A computational psychiatry approach identifies how alpha-2A noradrenergic agonist Guanfacine affects feature-based reinforcement learning in the macaque. Scientific Reports. 7:1-19. https://doi.org/10.1038/srep40606 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/srep40606 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.identifier.pmid 28091572 es_ES
dc.identifier.pmcid PMC5238510 es_ES
dc.relation.pasarela S\434975 es_ES
dc.contributor.funder Canadian Institutes of Health Research es_ES
dc.contributor.funder Ontario Ministry of Economic Development and Innovation es_ES
dc.contributor.funder Natural Sciences and Engineering Research Council of Canada es_ES
dc.description.references Arnsten, A. F., Wang, M. J. & Paspalas, C. D. Neuromodulation of thought: flexibilities and vulnerabilities in prefrontal cortical network synapses. Neuron 76, 223–239 (2012). es_ES
dc.description.references Arnsten, A. F. & Dudley, A. G. Methylphenidate improves prefrontal cortical cognitive function through alpha2 adrenoceptor and dopamine D1 receptor actions: Relevance to therapeutic effects in Attention Deficit Hyperactivity Disorder. Behav Brain Funct 1, 2 (2005). es_ES
dc.description.references Clark, K. L. & Noudoost, B. The role of prefrontal catecholamines in attention and working memory. Front Neural Circuits 8, 33 (2014). es_ES
dc.description.references Wang, M. et al. Neuronal basis of age-related working memory decline. Nature 476, 210–213 (2011). es_ES
dc.description.references Wang, M. et al. Alpha2A-adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex. Cell 129, 397–410 (2007). es_ES
dc.description.references Aston-Jones, G. & Cohen, J. D. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 28, 403–450 (2005). es_ES
dc.description.references Yu, A. J. & Dayan, P. Uncertainty, neuromodulation, and attention. Neuron 46, 681–692 (2005). es_ES
dc.description.references Mather, M., Clewett, D., Sakaki, M. & Harley, C. W. Norepinephrine ignites local hot spots of neuronal excitation: How arousal amplifies selectivity in perception and memory. Behav Brain Sci, 1–100, doi: 10.1017/S0140525X15000667 (2015). es_ES
dc.description.references Amemiya, S. & Redish, A. D. Manipulating Decisiveness in Decision Making: Effects of Clonidine on Hippocampal Search Strategies. J Neurosci 36, 814–827 (2016). es_ES
dc.description.references Doya, K. Metalearning and neuromodulation. Neural Netw 15, 495–506 (2002). es_ES
dc.description.references Uhlen, S., Muceniece, R., Rangel, N., Tiger, G. & Wikberg, J. E. Comparison of the binding activities of some drugs on alpha 2A, alpha 2B and alpha 2C-adrenoceptors and non-adrenergic imidazoline sites in the guinea pig. Pharmacology & toxicology 76, 353–364 (1995). es_ES
dc.description.references Mao, Z. M., Arnsten, A. F. & Li, B. M. Local infusion of an alpha-1 adrenergic agonist into the prefrontal cortex impairs spatial working memory performance in monkeys. Biological psychiatry 46, 1259–1265 (1999). es_ES
dc.description.references Arnsten, A. F. & Goldman-Rakic, P. S. Analysis of alpha-2 adrenergic agonist effects on the delayed nonmatch-to-sample performance of aged rhesus monkeys. Neurobiol Aging 11, 583–590 (1990). es_ES
dc.description.references Franowicz, J. S. & Arnsten, A. F. The alpha-2a noradrenergic agonist, guanfacine, improves delayed response performance in young adult rhesus monkeys. Psychopharmacology 136, 8–14 (1998). es_ES
dc.description.references Caetano, M. S. et al. Noradrenergic control of error perseveration in medial prefrontal cortex. Frontiers in Integrative Neuroscience 6, 125 (2012). es_ES
dc.description.references Kim, S., Bobeica, I., Gamo, N. J., Arnsten, A. F. & Lee, D. Effects of alpha-2A adrenergic receptor agonist on time and risk preference in primates. Psychopharmacology 219, 363–375 (2012). es_ES
dc.description.references Seu, E., Lang, A., Rivera, R. J. & Jentsch, J. D. Inhibition of the norepinephrine transporter improves behavioral flexibility in rats and monkeys. Psychopharmacology 202, 505–519 (2009). es_ES
dc.description.references Kawaura, K., Karasawa, J., Chaki, S. & Hikichi, H. Stimulation of postsynapse adrenergic alpha2A receptor improves attention/cognition performance in an animal model of attention deficit hyperactivity disorder. Behav Brain Res 270, 349–356 (2014). es_ES
dc.description.references Aoki, C., Go, C. G., Venkatesan, C. & Kurose, H. Perikaryal and synaptic localization of alpha 2A-adrenergic receptor-like immunoreactivity. Brain Res 650, 181–204 (1994). es_ES
dc.description.references Barth, A. M., Vizi, E. S., Zelles, T. & Lendvai, B. Alpha2-adrenergic receptors modify dendritic spike generation via HCN channels in the prefrontal cortex. J Neurophysiol 99, 394–401 (2008). es_ES
dc.description.references Ji, X. H., Ji, J. Z., Zhang, H. & Li, B. M. Stimulation of alpha2-adrenoceptors suppresses excitatory synaptic transmission in the medial prefrontal cortex of rat. Neuropsychopharmacology 33, 2263–2271 (2008). es_ES
dc.description.references Yi, F., Liu, S. S., Luo, F., Zhang, X. H. & Li, B. M. Signaling mechanism underlying alpha2A -adrenergic suppression of excitatory synaptic transmission in the medial prefrontal cortex of rats. Eur J Neurosci 38, 2364–2373 (2013). es_ES
dc.description.references Engberg, G. & Eriksson, E. Effects of alpha 2-adrenoceptor agonists on locus coeruleus firing rate and brain noradrenaline turnover in N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ)-treated rats. Naunyn-Schmiedeberg’s archives of pharmacology 343, 472–477 (1991). es_ES
dc.description.references Jakala, P. et al. Guanfacine, but not clonidine, improves planning and working memory performance in humans. Neuropsychopharmacology 20, 460–470 (1999). es_ES
dc.description.references Jakala, P. et al. Guanfacine and clonidine, alpha 2-agonists, improve paired associates learning, but not delayed matching to sample, in humans. Neuropsychopharmacology 20, 119–130 (1999). es_ES
dc.description.references Muller, U. et al. Lack of effects of guanfacine on executive and memory functions in healthy male volunteers. Psychopharmacology 182, 205–213 (2005). es_ES
dc.description.references Scahill, L. et al. A placebo-controlled study of guanfacine in the treatment of children with tic disorders and attention deficit hyperactivity disorder. The American journal of psychiatry 158, 1067–1074 (2001). es_ES
dc.description.references Huys, Q. J. M., Maia, T. V. & Frank, M. J. Computational psychiatry as a bridge from neuroscience to clinical applications. Nat Neurosci 19, 404–413 (2016). es_ES
dc.description.references Stephan, K. E. et al. Computational neuroimaging strategies for single patient predictions. NeuroImage in press (2015). es_ES
dc.description.references Arnsten, A. F., Cai, J. X. & Goldman-Rakic, P. S. The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects: evidence for alpha-2 receptor subtypes. J Neurosci 8, 4287–4298 (1988). es_ES
dc.description.references Callado, L. F. & Stamford, J. A. Alpha2A- but not alpha2B/C-adrenoceptors modulate noradrenaline release in rat locus coeruleus: voltammetric data. Eur J Pharmacol 366, 35–39 (1999). es_ES
dc.description.references Millan, M. J. et al. Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nature reviews. Drug discovery 11, 141–168 (2012). es_ES
dc.description.references Niv, Y. et al. Reinforcement learning in multidimensional environments relies on attention mechanisms. J Neurosci 35, 8145–8157 (2015). es_ES
dc.description.references Balcarras, M., Ardid, S., Kaping, D., Everling, S. & Womelsdorf, T. Attentional Selection Can Be Predicted by Reinforcement Learning of Task-relevant Stimulus Features Weighted by Value-independent Stickiness. J Cogn Neurosci 28, 333–349 (2016). es_ES
dc.description.references Redish, A. D., Jensen, S., Johnson, A. & Kurth-Nelson, Z. Reconciling reinforcement learning models with behavioral extinction and renewal: implications for addiction, relapse, and problem gambling. Psychol Rev 114, 784–805 (2007). es_ES
dc.description.references Nassar, M. R. et al. Rational regulation of learning dynamics by pupil-linked arousal systems. Nat Neurosci 15, 1040–1046 (2012). es_ES
dc.description.references O’Reilly, J. X. et al. Dissociable effects of surprise and model update in parietal and anterior cingulate cortex. Proc Natl Acad Sci USA 110, 3660–3669 (2013). es_ES
dc.description.references Shenhav, A., Botvinick, M. M. & Cohen, J. D. The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron 79, 217–240 (2013). es_ES
dc.description.references Womelsdorf, T. & Everling, S. Long-Range Attention Networks: Circuit Motifs Underlying Endogenously Controlled Stimulus Selection. Trends Neurosci 38, 682–700 (2015). es_ES
dc.description.references Yang, Y. et al. Nicotinic alpha7 receptors enhance NMDA cognitive circuits in dorsolateral prefrontal cortex. Proc Natl Acad Sci USA 110, 12078–12083 (2013). es_ES
dc.description.references Aston-Jones, G., Rajkowski, J. & Cohen, J. Role of locus coeruleus in attention and behavioral flexibility. Biological psychiatry 46, 1309–1320 (1999). es_ES
dc.description.references Cole, B. J. & Robbins, T. W. Forebrain norepinephrine: role in controlled information processing in the rat. Neuropsychopharmacology 7, 129–142 (1992). es_ES
dc.description.references Dalley, J. W., Cardinal, R. N. & Robbins, T. W. Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neuroscience and biobehavioral reviews 28, 771–784 (2004). es_ES
dc.description.references Devauges, V. & Sara, S. J. Activation of the noradrenergic system facilitates an attentional shift in the rat. Behav Brain Res 39, 19–28 (1990). es_ES
dc.description.references Connor, D. F., Arnsten, A. F., Pearson, G. S. & Greco, G. F. Guanfacine extended release for the treatment of attention-deficit/hyperactivity disorder in children and adolescents. Expert opinion on pharmacotherapy 15, 1601–1610 (2014). es_ES
dc.description.references Sallee, F. R. et al. Guanfacine extended release in children and adolescents with attention-deficit/hyperactivity disorder: a placebo-controlled trial. J Am Acad Child Adolesc Psychiatry 48, 155–165 (2009). es_ES
dc.description.references Steere, J. C. & Arnsten, A. F. The alpha-2A noradrenergic receptor agonist guanfacine improves visual object discrimination reversal performance in aged rhesus monkeys. Behav Neurosci 111, 883–891 (1997). es_ES
dc.description.references Doya, K. Modulators of decision making. Nat Neurosci 11, 410–416 (2008). es_ES
dc.description.references Wang, X. J. & Krystal, J. H. Computational psychiatry. Neuron 84, 638–654 (2014). es_ES
dc.description.references Wiecki, T. V. et al. A Computational Cognitive Biomarker for Early-Stage Huntington’s Disease. PLoS One 11, e0148409, doi: 10.1371/journal.pone.0148409 (2016). es_ES
dc.description.references Huys, Q. J., Pizzagalli, D. A., Bogdan, R. & Dayan, P. Mapping anhedonia onto reinforcement learning: a behavioural meta-analysis. Biol Mood Anxiety Disord 3, 12 (2013). es_ES
dc.description.references Gershman, S. J. & Niv, Y. Learning latent structure: carving nature at its joints. Curr Opin Neurobiol 20, 251–256 (2010). es_ES
dc.description.references Voon, V. et al. Disorders of compulsivity: a common bias towards learning habits. Mol Psychiatry 20, 345–352 (2015). es_ES
dc.description.references Maia, T. V. & Frank, M. J. From reinforcement learning models to psychiatric and neurological disorders. Nature Neuroscience 14, 154–162 (2011). es_ES
dc.description.references Adams, R. A., Huys, Q. J. M. & Roiser, J. P. Computational Psychiatry: towards a mathematically informed understanding of mental illness. Journal of Neurology, Neurosurgery, and Psychiatry 87, 53–63 (2015). es_ES
dc.description.references Schlagenhauf, F. et al. Striatal dysfunction during reversal learning in unmedicated schizophrenia patients. NeuroImage 89, 171–180 (2014). es_ES
dc.description.references Harlé, K. M. et al. Bayesian neural adjustment of inhibitory control predicts emergence of problem stimulant use. Brain 138, 3413–3426 (2015). es_ES
dc.description.references Zhang, J. et al. Different decision deficits impair response inhibition in progressive supranuclear palsy and Parkinson’s disease. Brain 139, 161–173 (2016). es_ES
dc.description.references Frank, M. J. et al. fMRI and EEG Predictors of Dynamic Decision Parameters during Human Reinforcement Learning. Journal of Neuroscience 35, 485–494 (2015). es_ES
dc.description.references Smith, A. C. & Brown, E. N. Estimating a state-space model from point process observations. Neural Comput 15, 965–991 (2003). es_ES
dc.description.references Wilson, R. C. & Niv, Y. Inferring relevance in a changing world. Frontiers in human neuroscience 5, 189 (2011). es_ES
dc.description.references Rämä, P. et al. Medetomidine, atipamezole, and guanfacine in delayed response performance of aged monkeys. Pharmacology Biochemistry and Behavior 55, 415–422 (1996). es_ES
dc.description.references Arnsten, A. F. T. & Contant, T. A. Alpha-2 adrenergic agonists decrease distractibility in aged monkeys performing the delayed response task. Psychopharmacology 108, 159–169 (1992). es_ES
dc.description.references O’Neill, J. et al. Effects of guanfacine on three forms of distraction in the aging macaque. Life Sciences 67, 877–885 (2000). es_ES
dc.description.references Wang, M., Ji, J.-Z. & Li, B.-M. The α2A-Adrenergic Agonist Guanfacine Improves Visuomotor Associative Learning in Monkeys. Neuropsychopharmacology 29, 86–92 (2004). es_ES
dc.description.references Witte, E. a. & Marrocco, R. T. Alteration of brain noradrenergic activity in rhesus monkeys affects the alerting component of covert orienting. Psychopharmacology 132, 315–323 (1997). es_ES
dc.description.references Decamp, E., Clark, K. & Schneider, J. S. Effects of the alpha-2 adrenoceptor agonist guanfacine on attention and working memory in aged non-human primates. European Journal of Neuroscience 34, 1018–1022 (2011). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem